Iterative Methods for Pricing American Options under the Bates Model

被引:16
作者
Salmi, Santtu [1 ]
Toivanen, Jari [1 ,2 ]
von Sydow, Lina [3 ]
机构
[1] Univ Jyvaskyla, Dept Math Informat Technol, POB 35 Agora, FI-40014 Jyvaskyla, Finland
[2] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[3] Uppsala Univ, Dept Informat Technol, S-75105 Uppsala, Sweden
来源
2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE | 2013年 / 18卷
关键词
American option; Bates model; Finite difference method; Iterative method; Linear complementarity problem; LINEAR COMPLEMENTARITY-PROBLEMS; JUMP-DIFFUSION; STOCHASTIC VOLATILITY; MULTIGRID ALGORITHMS; NUMERICAL VALUATION;
D O I
10.1016/j.procs.2013.05.279
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the numerical pricing of American options under the Bates model which adds log-normally distributed jumps for the asset value to the Heston stochastic volatility model. A linear complementarity problem (LCP) is formulated where partial derivatives are discretized using finite differences and the integral resulting from the jumps is evaluated using simple quadrature. A rapidly converging fixed point iteration is described for the LCP, where each iterate requires the solution of an LCP. These are easily solved using a projected algebraic multigrid (PAMG) method. The numerical experiments demonstrate the efficiency of the proposed approach. Furthermore, they show that the PAMG method leads to better scalability than the projected SOR (PSOR) method when the discretization is refined.
引用
收藏
页码:1136 / 1144
页数:9
相关论文
共 41 条
[1]   Numerical valuation of options with jumps in the underlying [J].
Almendral, A ;
Oosterlee, CW .
APPLIED NUMERICAL MATHEMATICS, 2005, 53 (01) :1-18
[2]  
Andersen L., 2000, Review of derivatives research, V4, P231
[3]  
[Anonymous], 1971, ITERATIVE SOLUTION L
[4]   Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options [J].
Bates, DS .
REVIEW OF FINANCIAL STUDIES, 1996, 9 (01) :69-107
[5]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[6]   MULTIGRID ALGORITHMS FOR THE SOLUTION OF LINEAR COMPLEMENTARITY-PROBLEMS ARISING FROM FREE-BOUNDARY PROBLEMS [J].
BRANDT, A ;
CRYER, CW .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1983, 4 (04) :655-684
[7]   VALUATION OF AMERICAN PUT OPTIONS [J].
BRENNAN, MJ ;
SCHWARTZ, ES .
JOURNAL OF FINANCE, 1977, 32 (02) :449-462
[8]  
Carter R., 2006, J COMPUT FINANC, V9, P89, DOI [DOI 10.21314/JCF.2006.152, 10.21314/JCF.2006.152]
[9]   THE EVALUATION OF AMERICAN OPTION PRICES UNDER STOCHASTIC VOLATILITY AND JUMP-DIFFUSION DYNAMICS USING THE METHOD OF LINES [J].
Chiarella, Carl ;
Kang, Boda ;
Meyer, Gunter H. ;
Ziogas, Andrew .
INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2009, 12 (03) :393-425
[10]  
Clarke N., 1999, APPL MATH FINANCE, V6, P177, DOI DOI 10.1080/135048699334528