Synthesis of iron phosphate powders by chemical precipitation route for high-power lithium iron phosphate cathodes

被引:29
作者
Hsieh, Chien-Te [1 ]
Chen, I-Ling [1 ]
Chen, Wei-Yu [1 ]
Wang, Jung-Pin [2 ]
机构
[1] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Tao Yuan 320, Taiwan
[2] Chung Hua Univ, PhD Program Technol Management, Hsinchu 300, Taiwan
关键词
Lithium iron phosphate; Carbon coating; Lithium ion battery; Co-precipitation; Cathode material; ELECTROCHEMICAL PERFORMANCE; LIFEPO4/C; COMPOSITE;
D O I
10.1016/j.electacta.2012.07.108
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Carbon-coated lithium iron phosphate (C/LFP) composite has been synthesized at 650 degrees C in an N-2 atmosphere by calcination/pyrolysis method using amorphous FePO4 center dot xH(2)O nanopowders as the precursor. The key factor for preparing the C/LFP composites is to start with the co-precipitation synthesis of FePO4 center dot xH(2)O spheres at pH 3. The C/LFP composite exhibits good crystallinity, well-dispersed particles of 250 nm, and in situ carbon coating (thickness: 3-4 nm) over the surface of LFP crystallites. The as-prepared C/LFP composite delivers a high discharge capacity of 162.1 and 119.7 mAh g(-1) at rates of 0.1 and 5 C, respectively. This enhanced rate capability is ascribed to the synergetic effect on the C/LFP cathode that combines (i) quasi-spherical nanoparticles and (ii) a thin carbon layer. Additionally, the C/LFP composite presents a high tap density (1.34 g cm(-3)), inducing high performance without sacrificing the volume energy density. Accordingly, the result reveals an efficient approach for synthesizing the C/LFP materials with excellent performance, which is beneficial for large-scale applications such as hybrid electric vehicles. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:202 / 208
页数:7
相关论文
共 20 条
[1]   Synthesis of LiFePO4/C by Carbon Thermal Reduction Method and its Electrochemical Properties [J].
Chen, Chao ;
Zhang, Yun ;
Wang, Fu ;
Zou, Jizhou .
ADVANCED MATERIALS AND STRUCTURES, PTS 1 AND 2, 2011, 335-336 :1364-1367
[2]   Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J].
Choi, Daiwon ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :1064-1069
[3]   Low temperature preparation of optimized phosphates for Li-battery applications [J].
Delacourt, C ;
Wurm, C ;
Reale, P ;
Morcrette, M ;
Masquelier, C .
SOLID STATE IONICS, 2004, 173 (1-4) :113-118
[4]   Porous olivine composites synthesized by sol-gel technique [J].
Dominko, R ;
Bele, M ;
Gaberscek, M ;
Remskar, M ;
Hanzel, D ;
Goupil, JM ;
Pejovnik, S ;
Jamnik, J .
JOURNAL OF POWER SOURCES, 2006, 153 (02) :274-280
[5]   Recent developments in cathode materials for lithium ion batteries [J].
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2010, 195 (04) :939-954
[6]   Influence of Particle Size and Crystal Orientation on the Electrochemical Behavior of Carbon-Coated LiFePO4 [J].
Ferrari, Stefania ;
Lavall, Rodrigo Lassarote ;
Capsoni, Doretta ;
Quartarone, Eliana ;
Magistris, Aldo ;
Mustarelli, Piercarlo ;
Canton, Patrizia .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (29) :12598-12603
[7]   Lithium metal phosphates, power and automotive applications [J].
Huang, H. ;
Faulkner, T. ;
Barker, J. ;
Saidi, M. Y. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :748-751
[8]   Synthesis of LiFePO4/carbon composite from nano-FePO4 by a novel stearic acid assisted rheological phase method [J].
Huang, Yanghui ;
Ren, Haibo ;
Peng, Zhenghe ;
Zhou, Yunhong .
ELECTROCHIMICA ACTA, 2009, 55 (01) :311-315
[9]   Optimized solid-state synthesis of LiFePO4 cathode materials using ball-milling [J].
Kang, Hee-Cheol ;
Jun, Dae-Kyoo ;
Jin, Bo ;
Jin, En Mei ;
Park, Kyung-Hee ;
Gu, Hal-Bon ;
Kim, Ki-Won .
JOURNAL OF POWER SOURCES, 2008, 179 (01) :340-346
[10]   Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis [J].
Kim, Jae-Kwang ;
Choi, Jae-Won ;
Chauhan, Ghanshyam S. ;
Ahn, Jou-Hyeon ;
Hwang, Gil-Chan ;
Choi, Jin-Beom ;
Ahn, Hyo-Jun .
ELECTROCHIMICA ACTA, 2008, 53 (28) :8258-8264