Split feasibility problem for quasi-nonexpansive multi-valued mappings and total asymptotically strict pseudo-contractive mapping

被引:27
作者
Chang, S. S. [1 ]
Lee, H. W. Joseph [2 ]
Chan, C. K. [2 ]
Wang, L. [1 ]
Qin, L. J. [3 ]
机构
[1] Yunnan Univ Finance & Econ, Coll Stat & Math, Kunming 650221, Yunnan, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[3] Kunming Univ, Dept Math, Kunming 650214, Yunnan, Peoples R China
关键词
Split feasibility problem; Convex feasibility problem; Single-valued (multi-valued) quasi-nonexpansive mapping; Demi-closeness; Opial's condition; Total asymptotically strict; pseudocontractive mapping; SETS; ALGORITHM;
D O I
10.1016/j.amc.2013.04.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this article is to study the split feasibility problem for a family of quasi-nonexpansive multi-valued mappings and a total asymptotically strict pseudo-contractive mapping in infinitely dimensional Hilbert spaces. The main results presented in the paper improve and extend some recent results of Censor et al. [Numer. Algorithms 8 (1994) 221-239; Inverse Problem 21 (2005) 2071-2084; J. Math. Anal. Appl. 327 (2007) 1244-1256], Byrne [Inverse Problem 18 (2002) 441-453], Yang [Inverse Problem 20 (2004) 1261-1266], Moudafi [Inverse Problem 26 (2010) 055007], Xu [Inverse Problem 26 (2010) 105018], Censor and Segal [J. Convex Anal. 16 (2009) 587-600], Masad and Reich [J. Nonlinear Convex Anal. 8 (2007) 367-371] and others. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:10416 / 10424
页数:9
相关论文
共 15 条
[11]   A variable Krasnosel'skii-Mann algorithm and the multiple-set split feasibility problem [J].
Xu, Hong-Kun .
INVERSE PROBLEMS, 2006, 22 (06) :2021-2034
[12]   Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces [J].
Xu, Hong-Kun .
INVERSE PROBLEMS, 2010, 26 (10)
[13]   Multiple-set split feasibility problems for total asymptotically strict pseudocontractions mappings [J].
Yang, Li ;
Chang, Shih-Sen ;
Cho, Yeol J. E. ;
Kim, Jong K. Y. U. .
FIXED POINT THEORY AND APPLICATIONS, 2011, :1-11
[14]   The relaxed CQ algorithm solving the split feasibility problem [J].
Yang, QZ .
INVERSE PROBLEMS, 2004, 20 (04) :1261-1266
[15]   Several solution methods for the split feasibility problem [J].
Zhao, JL ;
Yang, QZ .
INVERSE PROBLEMS, 2005, 21 (05) :1791-1799