Split feasibility problem for quasi-nonexpansive multi-valued mappings and total asymptotically strict pseudo-contractive mapping

被引:27
作者
Chang, S. S. [1 ]
Lee, H. W. Joseph [2 ]
Chan, C. K. [2 ]
Wang, L. [1 ]
Qin, L. J. [3 ]
机构
[1] Yunnan Univ Finance & Econ, Coll Stat & Math, Kunming 650221, Yunnan, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[3] Kunming Univ, Dept Math, Kunming 650214, Yunnan, Peoples R China
关键词
Split feasibility problem; Convex feasibility problem; Single-valued (multi-valued) quasi-nonexpansive mapping; Demi-closeness; Opial's condition; Total asymptotically strict; pseudocontractive mapping; SETS; ALGORITHM;
D O I
10.1016/j.amc.2013.04.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this article is to study the split feasibility problem for a family of quasi-nonexpansive multi-valued mappings and a total asymptotically strict pseudo-contractive mapping in infinitely dimensional Hilbert spaces. The main results presented in the paper improve and extend some recent results of Censor et al. [Numer. Algorithms 8 (1994) 221-239; Inverse Problem 21 (2005) 2071-2084; J. Math. Anal. Appl. 327 (2007) 1244-1256], Byrne [Inverse Problem 18 (2002) 441-453], Yang [Inverse Problem 20 (2004) 1261-1266], Moudafi [Inverse Problem 26 (2010) 055007], Xu [Inverse Problem 26 (2010) 105018], Censor and Segal [J. Convex Anal. 16 (2009) 587-600], Masad and Reich [J. Nonlinear Convex Anal. 8 (2007) 367-371] and others. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:10416 / 10424
页数:9
相关论文
共 15 条
[2]   The multiple-sets split feasibility problem and its applications for inverse problems [J].
Censor, Y ;
Elfving, T ;
Kopf, N ;
Bortfeld, T .
INVERSE PROBLEMS, 2005, 21 (06) :2071-2084
[3]  
Censor Y., 1994, Numerical Algorithms, V8, P221, DOI DOI 10.1007/BF02142692
[4]  
Censor Y, 2009, J CONVEX ANAL, V16, P587
[5]   A unified approach for inversion problems in intensity-modulated radiation therapy [J].
Censor, Yair ;
Bortfeld, Thomas ;
Martin, Benjamin ;
Trofimov, Alexei .
PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (10) :2353-2365
[6]   Perturbed projections and subgradient projections for the multiple-sets split feasibility problem [J].
Censor, Yair ;
Motova, Avi ;
Segal, Alexander .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (02) :1244-1256
[7]  
Chang SS, 2010, J INEQUAL APPL, V2010, P14, DOI DOI 10.1155/2010/869684
[8]   FIXED-POINT THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS [J].
GOEBEL, K ;
KIRK, WA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 35 (01) :171-&
[9]  
Masad E, 2007, J NONLINEAR CONVEX A, V8, P367
[10]   The split common fixed-point problem for demicontractive mappings [J].
Moudafi, A. .
INVERSE PROBLEMS, 2010, 26 (05)