Characteristics of thermal conductivity in classical water models

被引:143
作者
Sirk, Timothy W. [1 ]
Moore, Stan [2 ]
Brown, Eugene F. [3 ]
机构
[1] USA, Macromol Sci & Technol Branch, Res Lab, Aberdeen, MD 21005 USA
[2] Sandia Natl Labs, Scalable Algorithms Dept, Albuquerque, NM 87185 USA
[3] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA
关键词
MOLECULAR-DYNAMICS SIMULATIONS; EWALD; MESH; EQUATIONS; LIQUIDS; CHARGE; HEAT;
D O I
10.1063/1.4789961
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The thermal conductivities of common water models are compared using equilibrium (EMD) and non-equilibrium molecular dynamics (NEMD) simulation. A complete accounting for electrostatic contributions to the heat flux was found to resolve the previously reported differing results of NEMD and EMD Green-Kubo measurements for the extended simple point-charge (SPC/E) model. Accordingly, we demonstrate the influence of long-range electrostatics on the thermal conductivity with a simple coulomb cutoff, Ewald summation, and by an extended particle-particle particle-mesh method. For each water model, the thermal conductivity is computed and decomposed in terms of frequency-dependent thermodynamic and topological contributions. The rigid, three-site SPC, SPC/E, and transferable intermolecular potential (TIP3P-Ew) water models are shown to have similar thermal conductivity values at standard conditions, whereas models that include bond stretching and angle bending have higher thermal conductivities. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789961]
引用
收藏
页数:11
相关论文
共 53 条
[41]   NUMERICAL-INTEGRATION OF CARTESIAN EQUATIONS OF MOTION OF A SYSTEM WITH CONSTRAINTS - MOLECULAR-DYNAMICS OF N-ALKANES [J].
RYCKAERT, JP ;
CICCOTTI, G ;
BERENDSEN, HJC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (03) :327-341
[42]  
Sattler K. D., 2010, HDB NANOPHYSICS NANO, P9
[43]   Comparison of atomic-level simulation methods for computing thermal conductivity [J].
Schelling, PK ;
Phillpot, SR ;
Keblinski, P .
PHYSICAL REVIEW B, 2002, 65 (14) :1-12
[44]   The computer simulation of proton transport in water [J].
Schmitt, UW ;
Voth, GA .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (20) :9361-9381
[45]   Size effects in molecular dynamics thermal conductivity predictions [J].
Sellan, D. P. ;
Landry, E. S. ;
Turney, J. E. ;
McGaughey, A. J. H. ;
Amon, C. H. .
PHYSICAL REVIEW B, 2010, 81 (21)
[46]   Gaussian split Ewald: A fast Ewald mesh method for molecular simulation [J].
Shan, YB ;
Klepeis, JL ;
Eastwood, MP ;
Dror, RO ;
Shaw, DE .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (05)
[47]   Methodological problems in pressure profile calculations for lipid bilayers [J].
Sonne, J ;
Hansen, FY ;
Peters, GH .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (12)
[48]   COMPASS: An ab initio force-field optimized for condensed-phase applications - Overview with details on alkane and benzene compounds [J].
Sun, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (38) :7338-7364
[49]   A nonequilibrium molecular dynamics method for thermal conductivities based on thermal noise -: art. no. 081103 [J].
Terao, T ;
Müller-Plathe, F .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (08)
[50]   Heat transport in epoxy networks: A molecular dynamics study [J].
Varshney, Vikas ;
Patnaik, Soumya S. ;
Roy, Ajit K. ;
Farmer, Barry L. .
POLYMER, 2009, 50 (14) :3378-3385