Research on Non-Linear Parameters Identification for Servo System of CNC Machine Tools

被引:0
作者
Chen Guangsheng [1 ]
Li Haolin [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai 200093, Peoples R China
来源
ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4 | 2012年 / 220-223卷
关键词
Stribeck Model; Servo System; Parameter Identification; Method of Least Square; SLIP;
D O I
10.4028/www.scientific.net/AMM.220-223.344
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As phenomena of friction in computer numerical control(CNC) machine tools is inevitable, accurately modeling of friction is need for precise position control and performance evaluation of CNC machine tools. This paper proposed an identification method that non-linear friction model described as Stribeck are linearized by using high order Taylor series expansion and parameters of the model are obtained by least square method (LSM). Signals of servo motor current and rotating rate which are offered in many modem CNC machine tools are needed for the identification and experiments results show that parameters of Stribeck model can be obtained accurately by identification. The method is suited for industrial condition and has its practicality.
引用
收藏
页码:344 / 347
页数:4
相关论文
共 50 条
[31]   Machine vision system for the automatic identification of robot kinematic parameters [J].
Rousseau, P ;
Desrochers, A ;
Krouglicof, N .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2001, 17 (06) :972-978
[32]   Research on parameters identification of system with uncertainty and unknown parameter [J].
Wu, Guangbin ;
Liang, Guoqiang ;
Lei, Junwei .
PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND COMPUTING TECHNOLOGY, 2016, 60 :1952-1956
[33]   Modelling and identification of non-linear aerodynamic functions using B-splines [J].
Bruce, PD ;
Kellett, MG .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2000, 214 (G1) :27-40
[34]   Automated Identification of Linear Machine Tool Model Parameters Using Global Sensitivity Analysis [J].
Ellinger, Johannes ;
Zaeh, Michael F. .
MACHINES, 2022, 10 (07)
[35]   A New Regularization Method for a Parameter Identification Problem in a Non-linear Partial Differential Equation [J].
Nair, M. Thamban ;
Roy, Samprita Das .
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2023, 36 (02) :147-190
[36]   Non-linear structural parameter identification using instantaneous power flow balance approach [J].
Anish, R. ;
Shankar, K. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2021, 29 (05) :636-662
[37]   ADJOINT METHOD OF PARAMETER IDENTIFICATION FOR SOME NON-LINEAR REACTION-DIFFUSION SYSTEMS [J].
Jiang Cheng-shun ;
Liu Chao ;
Shen Yong-ming .
JOURNAL OF HYDRODYNAMICS, 2005, 17 (01) :80-86
[38]   A methodology for direct parameter identification for experimental results using machine learning - Real world application to the highly non-linear deformation behavior of FRP [J].
Gerritzen, Johannes ;
Hornig, Andreas ;
Winkler, Peter ;
Gude, Maik .
COMPUTATIONAL MATERIALS SCIENCE, 2024, 244
[39]   Estimation of two-axis synchronous machine parameters using non-deterministic tools [J].
Escarela-Perez, R. ;
Niewierowicz, T. ;
Campero-Littlewood, E. ;
Hernandez-Avila, J. L. .
2007 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING, 2007, :29-+
[40]   Grey-box modelling of a non-linear aerodynamic system using genetic algorithms [J].
Rahideh, A. ;
Shaheed, M. H. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2011, 225 (G8) :863-873