Controllable Large-Scale Transfection of Primary Mammalian Cardiomyocytes on a Nanochannel Array Platform

被引:67
作者
Chang, Lingqian [1 ,2 ]
Gallego-Perez, Daniel [1 ,2 ,3 ]
Chiang, Chi-Ling [1 ,5 ]
Bertani, Paul [6 ]
Kuang, Tairong [1 ]
Sheng, Yan [1 ,7 ]
Chen, Feng [1 ,7 ]
Chen, Zhou [1 ,8 ]
Shi, Junfeng [1 ]
Yang, Hao [6 ]
Huang, Xiaomeng [1 ,5 ]
Malkoc, Veysi [1 ,7 ]
Lu, Wu [1 ,6 ]
Lee, Ly James [1 ,2 ,4 ,7 ]
机构
[1] Ohio State Univ, NSEC Ctr Affordable Nanoengn Polymer Biomed Devic, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Biomed Engn, Columbus, OH 43209 USA
[3] Ohio State Univ, Dept Surg, Ctr Regenerat Med & Cell Based Therapies, Columbus, OH 43209 USA
[4] Ohio State Univ, Chem & Biomol Engn Dept, Columbus, OH 43209 USA
[5] Ohio State Univ, Dept Internal Med, Columbus, OH 43209 USA
[6] Ohio State Univ, Elect & Comp Engn Dept, Columbus, OH 43209 USA
[7] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA
[8] Nanjing Tech Univ, Coll Mech & Power Engn, Nanjing 211800, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
SINGLE-CELL ELECTROPORATION; ACUTE MYELOID-LEUKEMIA; IN-VIVO; MICROFLUIDIC DEVICE; ELECTROGENIC CELLS; GENE TRANSFECTION; ACTION-POTENTIALS; ELECTRIC-FIELD; DRUG-DELIVERY; LIVING CELLS;
D O I
10.1002/smll.201601465
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
While electroporation has been widely used as a physical method for gene transfection in vitro and in vivo, its application in gene therapy of cardiovascular cells remains challenging. Due to the high concentration of ion-transport proteins in the sarcolemma, conventional electroporation of primary cardiomyocytes tends to cause ion-channel activation and abnormal ion flux, resulting in low transfection efficiency and high mortality. In this work, a high-throughput nanoelectroporation technique based on a nanochannel array platform is reported, which enables massively parallel delivery of genetic cargo (microRNA, plasmids) into mouse primary cardiomyocytes in a controllable, highly efficient, and benign manner. A simple "dipping-trap" approach was implemented to precisely position a large number of cells on the nanoelectroporation platform. With dosage control, our device precisely titrates the level of miR-29, a potential therapeutic agent for cardiac fibrosis, and determines the minimum concentration of miR-29 causing side effects in mouse primary cardiomyocytes. Moreover, the dose-dependent effect of miR-29 on mitochondrial potential and homeostasis is monitored. Altogether, our nanochannel array platform provides efficient trapping and transfection of primary mouse cardiomyocyte, which can improve the quality control for future microRNA therapy in heart diseases.
引用
收藏
页码:5971 / 5980
页数:10
相关论文
共 47 条
[1]   Regulation of Cardiac Expression of the Diabetic Marker MicroRNA miR-29 [J].
Arnold, Nicholas ;
Koppula, Purushotham Reddy ;
Gul, Rukhsana ;
Luck, Christian ;
Pulakat, Lakshmi .
PLOS ONE, 2014, 9 (07)
[2]   Bosch etching for the creation of a 3D nanoelectroporation system for high throughput gene delivery [J].
Bertani, Paul ;
Lu, Wu ;
Chang, Lingqian ;
Gallego-Perez, Daniel ;
Lee, Ly James ;
Chiang, Chiling ;
Muthusamy, Natarajan .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2015, 33 (06)
[3]   Artifactual contractions triggered by field stimulation of cardiomyocytes [J].
Bokenes, J ;
Sjaastad, I ;
Sejersted, OM .
JOURNAL OF APPLIED PHYSIOLOGY, 2005, 98 (05) :1712-1719
[4]  
Boukany PE, 2011, NAT NANOTECHNOL, V6, P747, DOI [10.1038/NNANO.2011.164, 10.1038/nnano.2011.164]
[5]   Nanoscale bio-platforms for living cell interrogation: current status and future perspectives [J].
Chang, Lingqian ;
Hu, Jiaming ;
Chen, Feng ;
Chen, Zhou ;
Shi, Junfeng ;
Yang, Zhaogang ;
Li, Yiwen ;
Lee, Ly James .
NANOSCALE, 2016, 8 (06) :3181-3206
[6]   3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control [J].
Chang, Lingqian ;
Bertani, Paul ;
Gallego-Perez, Daniel ;
Yang, Zhaogang ;
Chen, Feng ;
Chiang, Chiling ;
Malkoc, Veysi ;
Kuang, Tairong ;
Gao, Keliang ;
Lee, L. James ;
Lu, Wu .
NANOSCALE, 2016, 8 (01) :243-252
[7]   Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy [J].
Chang, Lingqian ;
Gallego-Perez, Daniel ;
Zhao, Xi ;
Bertani, Paul ;
Yang, Zhaogang ;
Chiang, Chi-Ling ;
Malkoc, Veysi ;
Shi, Junfeng ;
Sen, Chandan K. ;
Odonnell, Lynn ;
Yu, Jianhua ;
Lu, Wu ;
Lee, L. James .
LAB ON A CHIP, 2015, 15 (15) :3147-3153
[8]   Magnetic Tweezers-Based 3D Microchannel Electroporation for High-Throughput Gene Transfection in Living Cells [J].
Chang, Lingqian ;
Howdyshell, Marci ;
Liao, Wei-Ching ;
Chiang, Chi-Ling ;
Gallego-Perez, Daniel ;
Yang, Zhaogang ;
Lu, Wu ;
Byrd, John C. ;
Muthusamy, Natarajan ;
Lee, L. James ;
Sooryakumar, Ratnasingham .
SMALL, 2015, 11 (15) :1818-1828
[9]  
Chiou PY, 2005, NATURE, V436, P370, DOI [10.1038/nature03831, 10.1038/nature0383l]
[10]   High-performance and site-directed in utero electroporation by a triple-electrode probe [J].
dal Maschio, Marco ;
Ghezzi, Diego ;
Bony, Guillaume ;
Alabastri, Alessandro ;
Deidda, Gabriele ;
Brondi, Marco ;
Sato, Sebastian Sulis ;
Zaccaria, Remo Proietti ;
Di Fabrizio, Enzo ;
Ratto, Gian Michele ;
Cancedda, Laura .
NATURE COMMUNICATIONS, 2012, 3