Learning dynamic Bayesian network with immune evolutionary algorithm

被引:0
作者
Jia, HY [1 ]
Liu, DY [1 ]
Yu, P [1 ]
机构
[1] Jilin Univ, Sch Comp Sci & Technol, Key Lab Symbol Comp & Knowledge Engn, Minist Educ, Changchun 130023, Peoples R China
来源
PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9 | 2005年
关键词
dynamic Bayesian network; structural learning; immune evolutionary algorithm;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic Bayesian Networks (DBNs) are directed graphical models of stochastic processes, How to learn the structure of DBNs from data is a hot problem of research. In this paper the author presents an Immune evolutionary algorithm for learning the network structure of DBNs. The results of contrast experiment prove that the constringency rate is more rapid than EGA-DBN algorithms.
引用
收藏
页码:2934 / 2938
页数:5
相关论文
共 19 条
[1]  
Burnet SFM., 1959, The clonal selection theory of acquired immunity, DOI [10.5962/bhl.title.8281, DOI 10.5962/BHL.TITLE.8281]
[2]   A new approach for learning belief networks using independence criteria [J].
de Campos, LM ;
Huete, JF .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2000, 24 (01) :11-37
[3]  
de Castro L.N., 2004, Recent Developments in Biologically Inspired Computing
[4]  
de Castro LN, 2002, IEEE C EVOL COMPUTAT, P699, DOI 10.1109/CEC.2002.1007011
[5]  
FORBES J, 1995, P 1995 INT INT JOINT
[6]  
Glover F., 2002, HDB METAHEURISTICS
[7]  
JERNE NK, 1974, ANN INST PASTEUR IMM, VC125, P373
[8]   A novel genetic algorithm based on immunity [J].
Jiao, LC ;
Wang, L .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2000, 30 (05) :552-561
[9]  
KULLBACK S, 1998, INFORM THEORY STAT
[10]  
LIU DY, 2001, J COMPUTER RES DEV, V38