THE r-MONOTONICITY OF GENERALIZED BERNSTEIN POLYNOMIALS

被引:0
|
作者
Zhu, Laiyi [1 ]
Huang, Zhiyong [1 ]
机构
[1] Renmin Univ China, Sch Informat, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized Bernstein polynomial; r-monotonicity; number of sign changes; CONVEXITY;
D O I
10.1017/S0013091512000016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f is an element of C[0, 1] and let the B-n(f, q; x) be generalized Bernstein polynomials based on the q-integers that were introduced by Phillips. We prove that if f is r-monotone, then B-n(f, q; x) is r-monotone, generalizing well-known results when q = 1 and the results when r = 1 and r = 2 by Goodman et al. We also prove a sufficient condition for a continuous function to be r-monotone.
引用
收藏
页码:797 / 807
页数:11
相关论文
共 30 条
  • [21] SOME MONOTONICITY PROPERTIES OF GENERALIZED ELLIPTIC INTEGRALS WITH APPLICATIONS
    Wang, Miao-Kun
    Chu, Yu-Ming
    Qiu, Song-Liang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (03): : 671 - 677
  • [22] MONOTONICITY, CONVEXITY AND INEQUALITIES INVOLVING THE GENERALIZED ELLIPTIC INTEGRALS
    Wang, Miaokun
    Zhang, Wen
    Chu, Yuming
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (05) : 1440 - 1450
  • [23] Monotonicity, Convexity and Inequalities Involving the Generalized Elliptic Integrals
    Miaokun Wang
    Wen Zhang
    Yuming Chu
    Acta Mathematica Scientia, 2019, 39 : 1440 - 1450
  • [24] A new complex generalized Bernstein-Schurer operator
    Cetin, Nursel
    CARPATHIAN JOURNAL OF MATHEMATICS, 2021, 37 (01) : 81 - 89
  • [25] Monotonicity and convexity involving generalized elliptic integral of the first kind
    Tie-Hong Zhao
    Miao-Kun Wang
    Yu-Ming Chu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [26] Maximal Abstract Monotonicity and Generalized Fenchel's Conjugation Formulas
    Eberhard, A. C.
    Mohebi, Hossein
    SET-VALUED AND VARIATIONAL ANALYSIS, 2010, 18 (01) : 79 - 108
  • [27] Monotonicity and convexity involving generalized elliptic integral of the first kind
    Zhao, Tie-Hong
    Wang, Miao-Kun
    Chu, Yu-Ming
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (02)
  • [28] MONOTONICITY, CONVEXITY AND BOUNDS INVOLVING THE BETA AND RAMANUJAN R-FUNCTIONS
    Huang, Ti-Ren
    Chen, Lu
    Tan, Shen-Yang
    Chu, Yu-Ming
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 615 - 628
  • [29] Poincare polynomials for Abelian symplectic quotients of pure r-qubits via wall-crossings
    Molladavoudi, Saeid
    Zainuddin, Hishamuddin
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 96 : 26 - 35
  • [30] On second order duality of minimax fractional programming with square root term involving generalized B-(p, r)-invex functions
    Sonali
    Kailey, N.
    Sharma, V.
    ANNALS OF OPERATIONS RESEARCH, 2016, 244 (02) : 603 - 617