Pseudo-Hermitian random matrix theory

被引:13
|
作者
Srivastava, Shashi C. L. [1 ]
Jain, Sudhir R. [2 ]
机构
[1] Ctr Variable Energy Cyclotron, RIBFG, Kolkata 700064, W Bengal, India
[2] Bhabha Atom Res Ctr, NPD, Bombay 400085, Maharashtra, India
来源
关键词
Random matrices; cyclic matrices; pseudo-Hermiticity; random walk; STATISTICAL-MECHANICS; CRYSTAL STATISTICS; QUANTUM CHAOS; SPECTRUM;
D O I
10.1002/prop.201200107
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to problems in statistical mechanics where new results have become possible. We have found it important to mention the precise directions where advances could be made if further results become available. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:276 / 290
页数:15
相关论文
共 50 条
  • [41] Is pseudo-Hermitian quantum mechanics an indefinite-metric quantum theory?
    Mostafazadeh, A
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2003, 53 (11) : 1079 - 1084
  • [42] Pseudo-Hermitian anti-Hermitian ensemble of Gaussian matrices
    Marinello, G.
    Pato, M. P.
    PHYSICAL REVIEW E, 2017, 96 (01)
  • [44] Optimal time evolution for pseudo-Hermitian Hamiltonians
    W. H. Wang
    Z. L. Chen
    Y. Song
    Y. J. Fan
    Theoretical and Mathematical Physics, 2020, 204 : 1020 - 1032
  • [45] Pseudo-Hermitian Systems, Involutive Symmetries and Pseudofermions
    O. Cherbal
    D. Trifonov
    M. Zenad
    International Journal of Theoretical Physics, 2016, 55 : 5318 - 5330
  • [46] Complex optical potentials and pseudo-Hermitian Hamiltonians
    Deb, RN
    Khare, A
    Roy, BD
    PHYSICS LETTERS A, 2003, 307 (04) : 215 - 221
  • [47] Comment on "New ansatz for metric operator calculation in pseudo-Hermitian field theory"
    Bender, Carl M.
    Benincasa, Gregorio
    Jones, H. F.
    PHYSICAL REVIEW D, 2009, 80 (12):
  • [48] Degeneracies and symmetry breaking in pseudo-Hermitian matrices
    Melkani, Abhijeet
    PHYSICAL REVIEW RESEARCH, 2023, 5 (02):
  • [49] Formation of exceptional points in pseudo-Hermitian systems
    Starkov, Grigory A.
    Fistul, Mikhail V.
    Eremin, Ilya M.
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [50] Pointwise Slant Curves in Pseudo-Hermitian Geometry
    Lee, Ji-Eun
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (03)