Pseudo-Hermitian random matrix theory

被引:13
|
作者
Srivastava, Shashi C. L. [1 ]
Jain, Sudhir R. [2 ]
机构
[1] Ctr Variable Energy Cyclotron, RIBFG, Kolkata 700064, W Bengal, India
[2] Bhabha Atom Res Ctr, NPD, Bombay 400085, Maharashtra, India
来源
关键词
Random matrices; cyclic matrices; pseudo-Hermiticity; random walk; STATISTICAL-MECHANICS; CRYSTAL STATISTICS; QUANTUM CHAOS; SPECTRUM;
D O I
10.1002/prop.201200107
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to problems in statistical mechanics where new results have become possible. We have found it important to mention the precise directions where advances could be made if further results become available. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:276 / 290
页数:15
相关论文
共 50 条
  • [31] EIGENVALUES OF SUMS OF PSEUDO-HERMITIAN MATRICES
    Foth, Philip
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 : 115 - 125
  • [32] Linear response theory for a pseudo-Hermitian system-reservoir interaction
    Duarte, O. S.
    Luiz, F. S.
    Moussa, M. H. Y.
    EPL, 2018, 121 (05)
  • [33] THE METRIC OPERATORS FOR PSEUDO-HERMITIAN HAMILTONIAN
    Wang, Wen-Hua
    Chen, Zheng-Li
    Li, Wei
    ANZIAM JOURNAL, 2023, 65 (03): : 215 - 228
  • [34] LOXODROMES AND TRANSFORMATIONS IN PSEUDO-HERMITIAN GEOMETRY
    Lee, Ji-Eun
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 36 (04): : 817 - 827
  • [35] Thermodynamics of pseudo-hermitian systems in equilibrium
    Jakubsky, Vit
    MODERN PHYSICS LETTERS A, 2007, 22 (15) : 1075 - 1084
  • [36] Dynamical invariants for pseudo-Hermitian Hamiltonians
    Simeonov, Lachezar S.
    Vitanov, Nikolay V.
    PHYSICAL REVIEW A, 2016, 93 (01)
  • [37] A pseudo-Hermitian β-Hermite family of matrices
    Marinello, G.
    Pato, M. P.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 444 : 1049 - 1061
  • [38] Pseudo-Hermitian β-Ensembles with Complex Eigenvalues
    Marinello, Gabriel
    Pato, Mauricio Porto
    NON-HERMITIAN HAMILTONIANS IN QUANTUM PHYSICS, 2016, 184 : 305 - 318
  • [39] Gaussian ensemble of 2x2 pseudo-Hermitian random matrices
    Ahmed, Z
    Jain, SR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3349 - 3362
  • [40] New ansatz for metric operator calculation in pseudo-Hermitian field theory
    Shalaby, Abouzeid M.
    PHYSICAL REVIEW D, 2009, 79 (10):