Pseudo-Hermitian random matrix theory

被引:13
|
作者
Srivastava, Shashi C. L. [1 ]
Jain, Sudhir R. [2 ]
机构
[1] Ctr Variable Energy Cyclotron, RIBFG, Kolkata 700064, W Bengal, India
[2] Bhabha Atom Res Ctr, NPD, Bombay 400085, Maharashtra, India
来源
关键词
Random matrices; cyclic matrices; pseudo-Hermiticity; random walk; STATISTICAL-MECHANICS; CRYSTAL STATISTICS; QUANTUM CHAOS; SPECTRUM;
D O I
10.1002/prop.201200107
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to problems in statistical mechanics where new results have become possible. We have found it important to mention the precise directions where advances could be made if further results become available. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:276 / 290
页数:15
相关论文
共 50 条
  • [1] Random matrix theory for pseudo-Hermitian systems: Cyclic blocks
    Jain, Sudhir R.
    Srivastava, Shashi C. L.
    PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (06): : 989 - 997
  • [2] Random matrix theory for pseudo-Hermitian systems: Cyclic blocks
    Sudhir R. Jain
    Shashi C. L. Srivastava
    Pramana, 2009, 73 : 989 - 997
  • [3] Pseudo-hermitian random matrix models: General formalism
    Feinberg, Joshua
    Riser, Roman
    NUCLEAR PHYSICS B, 2022, 975
  • [4] Entanglement of Pseudo-Hermitian Random States
    Goulart, Cleverson Andrade
    Pato, Mauricio Porto
    ENTROPY, 2020, 22 (10) : 1 - 13
  • [5] Pseudo-Hermitian ensemble of random Gaussian matrices
    Marinello, G.
    Pato, M. P.
    PHYSICAL REVIEW E, 2016, 94 (01)
  • [6] Statistical origin of pseudo-Hermitian supersymmetry and pseudo-Hermitian fermions
    Mostafazadeh, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (43): : 10193 - 10207
  • [7] PSEUDO-HERMITIAN INTERACTIONS IN DIRAC THEORY: EXAMPLES
    Mandai, Bhabani Prasad
    Gupta, Saurabh
    MODERN PHYSICS LETTERS A, 2010, 25 (20) : 1723 - 1732
  • [8] Gaussian-random ensembles of pseudo-Hermitian matrices
    Ahmed, Z
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (10) : 1011 - 1018
  • [9] Pseudo-Hermitian symmetries
    Boeckx, Eric
    Cho, Jong Taek
    ISRAEL JOURNAL OF MATHEMATICS, 2008, 166 (01) : 125 - 145
  • [10] Which metrics are consistent with a given pseudo-hermitian matrix?
    Feinberg, Joshua
    Znojil, Miloslav
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (01)