Meta-Optimization for Parameter Tuning with a Flexible Computing Budget

被引:19
作者
Branke, Juergen [1 ]
Elomari, Jawad [1 ]
机构
[1] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
来源
PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE | 2012年
关键词
Offline parameter optimization; parameter tuning; meta-optimization; PLACEMENT; ALGORITHM;
D O I
10.1145/2330163.2330336
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Meta-optimization techniques for tuning algorithm parameters usually try to find optimal parameter settings for a given computational budget allocated to the lower-level algorithm. If the available computational budget changes, parameters have to be optimized again from scratch, as they usually depend on the available time. For example, a small computational budget requires a focus on exploitation, while a larger budget allows more exploration. In situations where the optimization problem is expected to be solved for various computational budgets, meta-optimization is very time consuming. The method proposed in this paper can, in a single run, identify the best parameter settings for all possible computational budgets up to a specified maximum, hence saving a lot of time.
引用
收藏
页码:1245 / 1252
页数:8
相关论文
共 31 条
[1]   Fine-tuning of algorithms using fractional experimental designs and local search [J].
Adenso-Díaz, B ;
Laguna, M .
OPERATIONS RESEARCH, 2006, 54 (01) :99-114
[2]  
[Anonymous], 2001, P WORKSHOP ARTIFICIA
[3]  
[Anonymous], 2011, INT ENCY STAT SCI
[4]  
Baeck T, 1994, LECT NOTES COMPUT SC, V866, P418
[5]  
Bartz-Beielstein T, 2005, IEEE C EVOL COMPUTAT, P773
[6]  
Bartz-Beielstein T., 2007, EXPT RES EVOLUTIONAR, V1
[7]  
Birattari M., 2010, F RACE ITERATED F RA, P311, DOI [10.1007/978-3-642-02538-9, DOI 10.1007/978-3-642-02538-9]
[8]  
Burke E., 2011, HYFLEX BENEHMARK FRA
[9]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[10]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197