Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds

被引:46
作者
Bento, G. C. [1 ]
Ferreira, O. P. [1 ]
Oliveira, P. R. [2 ]
机构
[1] IME Univ Fed Goias, BR-74001970 Goiania, Go, Brazil
[2] COPPE Sistemas Univ Fed Rio de Janeiro, BR-21945970 Rio De Janeiro, RJ, Brazil
关键词
Steepest descent; Pareto optimality; Vector optimization; Quasi-Fejer convergence; Quasiconvexity; Riemannian manifolds; MONOTONE VECTOR-FIELDS; NEWTONS METHOD; QUASI-CONVEX; NONSMOOTH ANALYSIS; CONVERGENCE; SUBGRADIENT; ALGORITHM; SECTIONS; MAPPINGS; BARRIER;
D O I
10.1007/s10957-011-9984-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we present a steepest descent method with Armijo's rule for multicriteria optimization in the Riemannian context. The sequence generated by the method is guaranteed to be well defined. Under mild assumptions on the multicriteria function, we prove that each accumulation point (if any) satisfies first-order necessary conditions for Pareto optimality. Moreover, assuming quasiconvexity of the multicriteria function and nonnegative curvature of the Riemannian manifold, we prove full convergence of the sequence to a critical Pareto point.
引用
收藏
页码:88 / 107
页数:20
相关论文
共 44 条
[1]   A unifying local convergence result for Newton's method in Riemannian manifolds [J].
Alvarez, F. ;
Bolte, J. ;
Munier, J. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (02) :197-226
[2]  
[Anonymous], 1996, TRANSLATIONS MATH MO
[3]  
[Anonymous], 1996, Die Grundlehren der mathematischen Wissenschaften
[4]  
[Anonymous], 1998, FUNDAMENTALS DIFFERE
[5]   Singular Riemannian Barrier methods and gradient-projection dynamical systems for constrained optimization [J].
Attouch, H ;
Bolte, J ;
Redont, P ;
Teboulle, M .
OPTIMIZATION, 2004, 53 (5-6) :435-454
[6]   Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds [J].
Azagra, D ;
Ferrera, J ;
López-Mesas, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 220 (02) :304-361
[7]   Invariant monotone vector fields on Riemannian manifolds [J].
Barani, A. ;
Pouryayevali, M. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (05) :1850-1861
[8]   Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds [J].
Bento, G. C. ;
Ferreira, O. P. ;
Oliveira, P. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) :564-572
[9]   Subgradient Method for Convex Feasibility on Riemannian Manifolds [J].
Bento, Glaydston C. ;
Melo, Jefferson G. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (03) :773-785
[10]   Proximal methods in vector optimization [J].
Bonnel, H ;
Iusem, AN ;
Svaiter, BF .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (04) :953-970