Aerial Images and Convolutional Neural Network for Cotton Bloom Detection

被引:72
|
作者
Xu, Rui [1 ]
Li, Changying [1 ]
Paterson, Andrew H. [2 ]
Jiang, Yu [1 ]
Sun, Shangpeng [1 ]
Robertson, Jon S. [2 ]
机构
[1] Univ Georgia, Coll Engn, Biosensing & Instrumentat Lab, Athens, GA 30602 USA
[2] Univ Georgia, Dept Genet, Plant Genome Mapping Lab, Athens, GA 30602 USA
来源
FRONTIERS IN PLANT SCIENCE | 2018年 / 8卷
关键词
cotton; flower; bloom; unmanned aerial vehicle; point cloud; convolutional neural network; phenotyping; YIELD; RETENTION;
D O I
10.3389/fpls.2017.02235
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Monitoring flower development can provide useful information for production management, estimating yield and selecting specific genotypes of crops. The main goal of this study was to develop a methodology to detect and count cotton flowers, or blooms, using color images acquired by an unmanned aerial system. The aerial images were collected from two test fields in 4 days. A convolutional neural network (CNN) was designed and trained to detect cotton blooms in raw images, and their 3D locations were calculated using the dense point cloud constructed from the aerial images with the structure from motion method. The quality of the dense point cloud was analyzed and plots with poor quality were excluded from data analysis. A constrained clustering algorithm was developed to register the same bloom detected from different images based on the 3D location of the bloom. The accuracy and incompleteness of the dense point cloud were analyzed because they affected the accuracy of the 3D location of the blooms and thus the accuracy of the bloom registration result. The constrained clustering algorithm was validated using simulated data, showing good efficiency and accuracy. The bloom count from the proposed method was comparable with the number counted manually with an error of -4 to 3 blooms for the field with a single plant per plot. However, more plots were underestimated in the field with multiple plants per plot due to hidden blooms that were not captured by the aerial images. The proposed methodology provides a high-throughput method to continuously monitor the flowering progress of cotton.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Identification of Growing Points of Cotton Main Stem Based on Convolutional Neural Network
    Wang, Chunshan
    He, Siqi
    Wu, Huarui
    Teng, Guifa
    Zhao, Chunjiang
    Li, Jiuxi
    IEEE ACCESS, 2020, 8 : 208407 - 208417
  • [42] Automated detection of ulcers and erosions in capsule endoscopy images using a convolutional neural network
    Afonso, Joao
    Saraiva, Miguel Mascarenhas
    Ferreira, J. P. S.
    Cardoso, Helder
    Ribeiro, Tiago
    Andrade, Patricia
    Parente, Marco
    Jorge, Renato N.
    Macedo, Guilherme
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022, 60 (03) : 719 - 725
  • [43] Automatic Polyp Detection in Colonoscopy Images: Convolutional Neural Network, Dataset and Transfer Learning
    Sun, Mingjian
    Zhang, Xiao
    Qu, Ge
    Zou, Mengshu
    Du, Hai
    Ma, Liyong
    Qu, Yawei
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (01) : 126 - 133
  • [44] Vehicle Detection Algorithm Based on Convolutional Neural Network and RGB-D Images
    Wang Decheng
    Chen Xiangning
    Feng, Zhao
    Sun Haoran
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (18)
  • [45] Nuclei Detection in Cytological Images Using Convolutional Neural Network and Ellipse Fitting Algorithm
    Kowal, Marek
    Zejmo, Michal
    Korbicz, Jozef
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING (ICAISC 2018), PT II, 2018, 10842 : 157 - 167
  • [46] A Convolutional Neural Network Based Seam Carving Detection Scheme for Uncompressed Digital Images
    Ye, Jingyu
    Shi, Yuxi
    Xu, Guanshuo
    Shi, Yun-Qing
    DIGITAL FORENSICS AND WATERMARKING, IWDW 2018, 2019, 11378 : 3 - 13
  • [47] Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections
    Gura, Dmitry
    Dong, Bo
    Mehiar, Duaa
    Al Said, Nidal
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (02): : 1995 - 2014
  • [48] Ship images detection and classification based on convolutional neural network with multiple feature regions
    Xu, Zhijing
    Sun, Jiuwu
    Huo, Yuhao
    IET SIGNAL PROCESSING, 2022, 16 (06) : 707 - 721
  • [49] Laser Cut Interruption Detection from Small Images by Using Convolutional Neural Network
    Adelmann, Benedikt
    Schleier, Max
    Hellmann, Ralf
    SENSORS, 2021, 21 (02) : 1 - 13
  • [50] Resampling detection of recompressed images via dual-stream convolutional neural network
    Cao, Gang
    Zhou, Antao
    Huang, Xianglin
    Song, Gege
    Yang, Lifang
    Zhu, Yonggui
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (05) : 5022 - 5040