Aerial Images and Convolutional Neural Network for Cotton Bloom Detection

被引:72
|
作者
Xu, Rui [1 ]
Li, Changying [1 ]
Paterson, Andrew H. [2 ]
Jiang, Yu [1 ]
Sun, Shangpeng [1 ]
Robertson, Jon S. [2 ]
机构
[1] Univ Georgia, Coll Engn, Biosensing & Instrumentat Lab, Athens, GA 30602 USA
[2] Univ Georgia, Dept Genet, Plant Genome Mapping Lab, Athens, GA 30602 USA
来源
FRONTIERS IN PLANT SCIENCE | 2018年 / 8卷
关键词
cotton; flower; bloom; unmanned aerial vehicle; point cloud; convolutional neural network; phenotyping; YIELD; RETENTION;
D O I
10.3389/fpls.2017.02235
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Monitoring flower development can provide useful information for production management, estimating yield and selecting specific genotypes of crops. The main goal of this study was to develop a methodology to detect and count cotton flowers, or blooms, using color images acquired by an unmanned aerial system. The aerial images were collected from two test fields in 4 days. A convolutional neural network (CNN) was designed and trained to detect cotton blooms in raw images, and their 3D locations were calculated using the dense point cloud constructed from the aerial images with the structure from motion method. The quality of the dense point cloud was analyzed and plots with poor quality were excluded from data analysis. A constrained clustering algorithm was developed to register the same bloom detected from different images based on the 3D location of the bloom. The accuracy and incompleteness of the dense point cloud were analyzed because they affected the accuracy of the 3D location of the blooms and thus the accuracy of the bloom registration result. The constrained clustering algorithm was validated using simulated data, showing good efficiency and accuracy. The bloom count from the proposed method was comparable with the number counted manually with an error of -4 to 3 blooms for the field with a single plant per plot. However, more plots were underestimated in the field with multiple plants per plot due to hidden blooms that were not captured by the aerial images. The proposed methodology provides a high-throughput method to continuously monitor the flowering progress of cotton.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Optimal Deep Convolutional Neural Network for Vehicle Detection in Remote Sensing Images
    Alshahrani, Saeed Masoud
    Alotaibi, Saud S.
    Al-Otaibi, Shaha
    Mousa, Mohamed
    Hilal, Anwer Mustafa
    Abdelmageed, Amgad Atta
    Motwakel, Abdelwahed
    Eldesouki, Mohamed I.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 3117 - 3131
  • [22] MicroNet: microaneurysm detection in retinal fundus images using convolutional neural network
    Murugan, R.
    Roy, Parthapratim
    SOFT COMPUTING, 2022, 26 (03) : 1057 - 1066
  • [23] MicroNet: microaneurysm detection in retinal fundus images using convolutional neural network
    R Murugan
    Parthapratim Roy
    Soft Computing, 2022, 26 : 1057 - 1066
  • [24] Text Detection in Low Resolution Scene Images Using Convolutional Neural Network
    Risnumawan, Anhar
    Sulistijono, Indra Adji
    Abawajy, Jemal
    RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING, 2017, 549 : 366 - 375
  • [25] Autonomous cloud detection for remote sensing images using convolutional neural network
    Wu Y.
    Zhang Z.
    Hua B.
    Chen Z.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2020, 52 (12): : 27 - 34
  • [26] Potential Fault Region Detection in TFDS Images Based on Convolutional Neural Network
    Sun, Junhua
    Xiao, Zhongwen
    INFRARED TECHNOLOGY AND APPLICATIONS, AND ROBOT SENSING AND ADVANCED CONTROL, 2016, 10157
  • [27] Convolutional neural network based hurricane damage detection using satellite images
    Swapandeep Kaur
    Sheifali Gupta
    Swati Singh
    Deepika Koundal
    Atef Zaguia
    Soft Computing, 2022, 26 : 7831 - 7845
  • [28] Virus Particle Detection by Convolutional Neural Network in Transmission Electron Microscopy Images
    Eisuke Ito
    Takaaki Sato
    Daisuke Sano
    Etsuko Utagawa
    Tsuyoshi Kato
    Food and Environmental Virology, 2018, 10 : 201 - 208
  • [29] Virus Particle Detection by Convolutional Neural Network in Transmission Electron Microscopy Images
    Ito, Eisuke
    Sato, Takaaki
    Sano, Daisuke
    Utagawa, Etsuko
    Kato, Tsuyoshi
    FOOD AND ENVIRONMENTAL VIROLOGY, 2018, 10 (02) : 201 - 208
  • [30] Convolutional neural network based hurricane damage detection using satellite images
    Kaur, Swapandeep
    Gupta, Sheifali
    Singh, Swati
    Koundal, Deepika
    Zaguia, Atef
    SOFT COMPUTING, 2022, 26 (16) : 7831 - 7845