Quantum Bell-Ziv-Zakai Bounds and Heisenberg Limits for Waveform Estimation

被引:62
作者
Berry, Dominic W. [1 ]
Tsang, Mankei [2 ,3 ]
Hall, Michael J. W. [4 ]
Wiseman, Howard M. [4 ]
机构
[1] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[3] Natl Univ Singapore, Dept Phys, Singapore 117551, Singapore
[4] Griffith Univ, Ctr Quantum Dynam, Ctr Quantum Computat & Commun Technol, Australian Res Council, Brisbane, Qld 4111, Australia
基金
新加坡国家研究基金会;
关键词
BHATTACHARYYA DISTANCE MEASURES; PARAMETER-ESTIMATION; ENHANCED METROLOGY; SIGNAL SELECTION; COMMUNICATION; OBSERVABLES; DIVERGENCE; STATES; LIGHT;
D O I
10.1103/PhysRevX.5.031018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose quantum versions of the Bell-Ziv-Zakai lower bounds for the error in multiparameter estimation. As an application, we consider measurement of a time-varying optical phase signal with stationary Gaussian prior statistics and a power-law spectrum similar to 1/vertical bar omega vertical bar(p), with p > 1. With no other assumptions, we show that the mean-square error has a lower bound scaling as 1/N2(p-1)/(p+1), where N is the time-averaged mean photon flux. Moreover, we show that this scaling is achievable by sampling and interpolation, for any p > 1. This bound is thus a rigorous generalization of the Heisenberg limit, for measurement of a single unknown optical phase, to a stochastically varying optical phase.
引用
收藏
页数:28
相关论文
共 70 条
[1]   Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit [J].
Anisimov, Petr M. ;
Raterman, Gretchen M. ;
Chiruvelli, Aravind ;
Plick, William N. ;
Huver, Sean D. ;
Lee, Hwang ;
Dowling, Jonathan P. .
PHYSICAL REVIEW LETTERS, 2010, 104 (10)
[2]  
[Anonymous], 2007, Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking, DOI DOI 10.1109/9780470544198.CH39
[3]  
[Anonymous], ARXIV12043761
[4]  
[Anonymous], ARXIV14020495
[5]  
[Anonymous], 2012, QUANTUM SYSTEMS CHAN
[6]   Adaptive homodyne measurement of optical phase [J].
Armen, MA ;
Au, JK ;
Stockton, JK ;
Doherty, AC ;
Mabuchi, H .
PHYSICAL REVIEW LETTERS, 2002, 89 (13)
[7]   REALISTIC QUANTUM STATES OF LIGHT WITH MINIMUM PHASE UNCERTAINTY [J].
BANDILLA, A ;
PAUL, H ;
RITZE, HH .
QUANTUM OPTICS, 1991, 3 (05) :267-282
[8]   A global lower bound on parameter estimation error with periodic distortion functions [J].
Basu, S ;
Bresler, Y .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) :1145-1150
[9]   Extended Ziv-Zakai lower bound for vector parameter estimation [J].
Bell, KL ;
Steinberg, Y ;
Ephraim, Y ;
VanTrees, HL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (02) :624-637
[10]   Stochastic Heisenberg Limit: Optimal Estimation of a Fluctuating Phase [J].
Berry, Dominic W. ;
Hall, Michael J. W. ;
Wiseman, Howard M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (11)