Quantum Bell-Ziv-Zakai Bounds and Heisenberg Limits for Waveform Estimation

被引:59
作者
Berry, Dominic W. [1 ]
Tsang, Mankei [2 ,3 ]
Hall, Michael J. W. [4 ]
Wiseman, Howard M. [4 ]
机构
[1] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[3] Natl Univ Singapore, Dept Phys, Singapore 117551, Singapore
[4] Griffith Univ, Ctr Quantum Dynam, Ctr Quantum Computat & Commun Technol, Australian Res Council, Brisbane, Qld 4111, Australia
来源
PHYSICAL REVIEW X | 2015年 / 5卷 / 03期
基金
新加坡国家研究基金会;
关键词
BHATTACHARYYA DISTANCE MEASURES; PARAMETER-ESTIMATION; ENHANCED METROLOGY; SIGNAL SELECTION; COMMUNICATION; OBSERVABLES; DIVERGENCE; STATES; LIGHT;
D O I
10.1103/PhysRevX.5.031018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose quantum versions of the Bell-Ziv-Zakai lower bounds for the error in multiparameter estimation. As an application, we consider measurement of a time-varying optical phase signal with stationary Gaussian prior statistics and a power-law spectrum similar to 1/vertical bar omega vertical bar(p), with p > 1. With no other assumptions, we show that the mean-square error has a lower bound scaling as 1/N2(p-1)/(p+1), where N is the time-averaged mean photon flux. Moreover, we show that this scaling is achievable by sampling and interpolation, for any p > 1. This bound is thus a rigorous generalization of the Heisenberg limit, for measurement of a single unknown optical phase, to a stochastically varying optical phase.
引用
收藏
页数:28
相关论文
共 70 条
  • [1] Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit
    Anisimov, Petr M.
    Raterman, Gretchen M.
    Chiruvelli, Aravind
    Plick, William N.
    Huver, Sean D.
    Lee, Hwang
    Dowling, Jonathan P.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (10)
  • [2] [Anonymous], 2007, Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking, DOI DOI 10.1109/9780470544198.CH39
  • [3] [Anonymous], ARXIV12043761
  • [4] [Anonymous], ARXIV14020495
  • [5] [Anonymous], 2012, QUANTUM SYSTEMS CHAN
  • [6] Adaptive homodyne measurement of optical phase
    Armen, MA
    Au, JK
    Stockton, JK
    Doherty, AC
    Mabuchi, H
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (13)
  • [7] REALISTIC QUANTUM STATES OF LIGHT WITH MINIMUM PHASE UNCERTAINTY
    BANDILLA, A
    PAUL, H
    RITZE, HH
    [J]. QUANTUM OPTICS, 1991, 3 (05): : 267 - 282
  • [8] A global lower bound on parameter estimation error with periodic distortion functions
    Basu, S
    Bresler, Y
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) : 1145 - 1150
  • [9] Extended Ziv-Zakai lower bound for vector parameter estimation
    Bell, KL
    Steinberg, Y
    Ephraim, Y
    VanTrees, HL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (02) : 624 - 637
  • [10] Stochastic Heisenberg Limit: Optimal Estimation of a Fluctuating Phase
    Berry, Dominic W.
    Hall, Michael J. W.
    Wiseman, Howard M.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (11)