Morse theory for indefinite nonlinear elliptic problems

被引:12
作者
Chang, Kung-Ching [1 ]
Jiang, Mei-Yue [1 ]
机构
[1] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2009年 / 26卷 / 01期
基金
中国国家自然科学基金;
关键词
MULTIPLE SOLUTIONS; GLOBAL-SOLUTIONS; HEAT-EQUATIONS; LINKING;
D O I
10.1016/j.anihpc.2007.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the heat flow as a deformation, a Morse theory for the solutions of the nonlinear elliptic equation: -Delta u - lambda u = a(+)(x)vertical bar u vertical bar(q-1)u - a(x)vertical bar u vertical bar(p-1)u + h(x, u) in a bounded domain Omega subset of R-N with the Dirichlet boundary condition is established, where a(+/-) >= 0, supp(a(-)) boolean AND supp(a(+)) phi, supp(a(+)) not equal phi 1 < q < 2* - 1and p > 1. Various existence and multiplicity results of solutions are presented. (c) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:139 / 158
页数:20
相关论文
共 27 条
[1]  
ACKERMANN N, T AM MATH S IN PRESS
[2]   Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking [J].
Alama, S ;
DelPino, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (01) :95-115
[3]   ON SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE NONLINEARITIES [J].
ALAMA, S ;
TARANTELLO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (04) :439-475
[4]   Elliptic problems with nonlinearities indefinite in sign [J].
Alama, S ;
Tarantello, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 141 (01) :159-215
[5]   A priori bounds and multiple solutions for superlinear indefinite elliptic problems [J].
Amann, H ;
Lopez-Gomez, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 146 (02) :336-374
[6]  
[Anonymous], 1996, Topol. Methods Nonlinear Anal, DOI DOI 10.12775/TMNA.1996.003
[7]  
[Anonymous], 1999, Acta Math. Univ. Comenian (N.S.)
[8]  
[Anonymous], 1994, Topol. Methods Nonlinear Anal.
[9]   Critical point theory on partially ordered Hilbert spaces [J].
Bartsch, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (01) :117-152
[10]  
Bartsch T., 1996, Topol. Methods Nonlinear Anal, V7, P115