EIGENVALUE STATISTICS FOR CMV MATRICES: FROM POISSON TO CLOCK VIA RANDOM MATRIX ENSEMBLES

被引:65
作者
Kilip, Rowan [1 ]
Stoiciu, Mihai [2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Williams Coll, Dept Math & Stat, Williamstown, MA 01267 USA
基金
美国国家科学基金会;
关键词
ENERGY LEVELS; ORTHOGONAL POLYNOMIALS; CONTINUOUS-SPECTRUM; UNIVERSALITY; ZEROS; FLUCTUATION; CONJECTURE; OPERATORS; MODELS; POINT;
D O I
10.1215/00127094-2009-001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study CMV matrices (discrete one-dimensional Dirac-type operators) with random decaying coefficients. Under mild assumptions, we identify the local eigenvalue statistics in the natural scaling limit. For rapidly decreasing coefficients, the eigenvalues have rigid spacing (like the numerals on a clock): in the case of slow decrease, the eigenvalues are distributed according to a Poisson process. For a certain critical rate of decay, we obtain the beta-ensembles of random matrix theory. The temperature beta(-1) appears as the square of the coupling constant.
引用
收藏
页码:361 / 399
页数:39
相关论文
共 56 条
[1]   Finite-volume fractional-moment criteria for Anderson localization [J].
Aizenman, M ;
Schenker, JH ;
Friedrich, RM ;
Hundertmark, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 224 (01) :219-253
[2]   LOCALIZATION AT LARGE DISORDER AND AT EXTREME ENERGIES - AN ELEMENTARY DERIVATION [J].
AIZENMAN, M ;
MOLCHANOV, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (02) :245-278
[3]  
[Anonymous], 1979, GRUNDLEHREN MATH WIS
[4]  
[Anonymous], Log-Gases and Random Matrices
[5]  
[Anonymous], 2000, ORTHOGONAL POLYNOMIA
[6]  
[Anonymous], 1970, SERIES MONOGRAPHS TX
[7]  
[Anonymous], INT C MATH
[8]  
[Anonymous], 2005, AM MATH SOC COLLOQ P
[9]  
Apostol T. M., 1969, Calculus, VII