A remark on the uniqueness of positive solutions for some Dirichlet problems

被引:6
作者
Afrouzi, GA [1 ]
Rasouli, SH [1 ]
机构
[1] Mazandaran Univ, Fac Basic Sci, Dept Math, Babol Sar, Iran
关键词
logistic equation; p-Laplacian; uniqueness;
D O I
10.1016/j.na.2005.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the uniqueness of positive weak solutions to the problem [GRAPHICS] by a direct argument. Here Omega is a bounded domain in R-N (N >= 3) with smooth boundary partial derivative Omega, Delta(p) denotes the p-Laplacian operator defined by Delta(p)z = div(vertical bar del z vertical bar(p-2)del z); P > 1, g(x, 0) = 0, for a.e. x epsilon Omega, and g(x, u) is a Caratheodory function. We provide a direct uniqueness proof for this problem, under certain conditions. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2773 / 2777
页数:5
相关论文
共 10 条
[1]   On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions [J].
Afrouzi, GA ;
Brown, KJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (01) :125-130
[2]   On a diffusive logistic equation [J].
Afrouzi, GA ;
Brown, KJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 225 (01) :326-339
[3]  
Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
[4]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[5]   REMARKS ON SUBLINEAR ELLIPTIC-EQUATIONS [J].
BREZIS, H ;
OSWALD, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :55-64
[6]  
CUESTA M, 2001, ELECT J DIFFERENTIAL, P1
[7]   Existence and uniqueness of positive solutions for some quasilinear elliptic problems [J].
Drábek, P ;
Hernández, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (02) :189-204
[9]   ON EIGENVALUE PROBLEMS OF THE P-LAPLACIAN WITH NEUMANN BOUNDARY-CONDITIONS [J].
HUANG, YX .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (01) :177-184
[10]   Symmetry results for functions yielding best constants in Sobolev-type inequalities [J].
Kawohl, B .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2000, 6 (03) :683-690