Microchip-based homogeneous immunoassay using fluorescence polarization spectroscopy

被引:41
作者
Tachi, Tomoya [1 ]
Kaji, Noritada [1 ,2 ]
Tokeshi, Manabu [1 ,2 ]
Baba, Yoshinobu [1 ,2 ,3 ,4 ,5 ]
机构
[1] Nagoya Univ, Grad Sch Engn, Dept Appl Chem, Nagoya, Aichi 4648603, Japan
[2] Nagoya Univ, MEXT Innovat Res Ctr Prevent Med Engn, Nagoya, Aichi 4648603, Japan
[3] Nagoya Univ, Plasma Nanotechnol Res Ctr, Nagoya, Aichi 4648603, Japan
[4] Natl Inst Adv Ind Sci & Technol, Takamatsu, Kagawa 7610395, Japan
[5] Natl Inst Nat Sci, Inst Mol Sci, Okazaki, Aichi 4448585, Japan
关键词
ON-A-CHIP; POLY(DIMETHYLSILOXANE); SYSTEMS;
D O I
10.1039/b813640h
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We have realized fluorescence polarization immunoassay (FPIA) on a microchip in about 1 minute. FPIA is a homogeneous competitive immunoassay which is based on measuring fluorescence polarization after competitive binding of an analyte and a tracer to an antibody. We constructed a microfluidic FPIA system composed of a newly designed microchip, a laser, a CCD camera and an optical microscope with two specially installed polarizers-one fixed and one rotatable. Theophylline, a typical small drug molecule, was used as a model analyte. Theophylline and fluorescence-labeled theophylline were introduced through different inlets and combined in a 100 mu m-wide microchannel where anti-theophylline antibody was added. To optimize the microchip design for FPIA, we investigated the diffusion time of theophylline and the mixing time of theophylline and antibody in this channel, which were 6 s and 36 s, respectively. We successfully carried out a quantitative analysis of theophylline in serum near the therapeutic range in 65 s. In FPIA, a larger tracer-antibody complex emits more polarized fluorescence than the tracer, and therefore, by increasing the antigen concentration in a sample, more polarization relaxation is observed since the tracer-antibody complex concentration is decreased and the tracer concentration is increased. Tracer binding to an antibody is directly measured by spectroscopic techniques without any separation process. This microchip-based FPIA is very simple and rapid, unlike microchip-based heterogeneous immunoassay, because it does not require several processes such as washing and reflowing and immobilizing of antibodies or antigens in the channel. In the future, microchip-based FPIA should find frequent use for point-of-care testing in the clinical field, where conventional FPIA has been used for laboratory tests.
引用
收藏
页码:966 / 971
页数:6
相关论文
共 27 条
[1]   Microfluidic immunosensor systems [J].
Bange, A ;
Halsall, HB ;
Heineman, WR .
BIOSENSORS & BIOELECTRONICS, 2005, 20 (12) :2488-2503
[2]  
CLAUSS MA, 1990, CANCER RES, V50, P3487
[3]   Control and detection of chemical reactions in microfluidic systems [J].
deMello, Andrew J. .
NATURE, 2006, 442 (7101) :394-402
[4]   Lab-on-a-chip: microfluidics in drug discovery [J].
Dittrich, PS ;
Manz, A .
NATURE REVIEWS DRUG DISCOVERY, 2006, 5 (03) :210-218
[5]   Cells on chips [J].
El-Ali, Jamil ;
Sorger, Peter K. ;
Jensen, Klavs F. .
NATURE, 2006, 442 (7101) :403-411
[6]   A miniaturized high-voltage integrated power supply for portable microfluidic applications [J].
Erickson, D ;
Sinton, D ;
Li, DQ .
LAB ON A CHIP, 2004, 4 (02) :87-90
[7]   Experimental determination of the theophylline diffusion coefficient in swollen sodium-alginate membranes [J].
Grassi, M ;
Colombo, I ;
Lapasin, R .
JOURNAL OF CONTROLLED RELEASE, 2001, 76 (1-2) :93-105
[8]   A rapid diffusion immunoassay in a T-sensor [J].
Hatch, A ;
Kamholz, AE ;
Hawkins, KR ;
Munson, MS ;
Schilling, EA ;
Weigl, BH ;
Yager, P .
NATURE BIOTECHNOLOGY, 2001, 19 (05) :461-465
[9]   Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels [J].
Ismagilov, RF ;
Stroock, AD ;
Kenis, PJA ;
Whitesides, G ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2000, 76 (17) :2376-2378
[10]   Rapid microfluidic mixing [J].
Johnson, TJ ;
Ross, D ;
Locascio, LE .
ANALYTICAL CHEMISTRY, 2002, 74 (01) :45-51