The velocity operator in quantum mechanics in noncommutative space

被引:15
作者
Kovacik, Samuel [1 ]
Presnajder, Peter [1 ]
机构
[1] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia
关键词
HYDROGEN-ATOM SPECTRUM; AHARONOV-BOHM; DIFFERENTIAL GEOMETRY;
D O I
10.1063/1.4826355
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We tested the consequences of noncommutative (NC from now on) coordinates x(k), k = 1, 2, 3 in the framework of quantum mechanics. We restricted ourselves to 3D rotationally invariant NC configuration spaces with dynamics specified by the Hamiltonian (H) over cap = (H) over cap (0) + (U) over cap, where (H) over cap (0) is an analogue of kinetic energy and (U) over cap = (U) over cap((r) over cap) denotes an arbitrary rotationally invariant potential. We introduced the velocity operator by (V) over cap (k) = -i[(X) over cap (k), (H) over cap] ((X) over cap (k) being the position operator), which is a NC generalization of the usual gradient operator (multiplied by -i). We found that the NC velocity operators possess various general, independent of potential, properties: (1) uncertainty relations [(V) over cap (i), (X) over cap (j)] indicate an existence of a natural kinetic energy cut-off, (2) commutation relations [(V) over cap (i), (V) over cap (j)] = 0, which is non-trivial in the NC case, (3) relation between (V) over cap (2) and (H) over cap (0) that indicates the existence of maximal velocity and confirms the kinetic energy cut-off, (4) all these results sum up in canonical (general, not depending on a particular form of the central potential) commutation relations of Euclidean group E(4) = SO(4)(sic)T(4), (5) Heisenberg equation for the velocity operator, relating acceleration (V) over cap over dot(k) = -i[(V) over cap (k), (H) over cap] to derivatives of the potential. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 21 条
[1]   Dirac equation in noncommutative space for hydrogen atom [J].
Adorno, T. C. ;
Baldiotti, M. C. ;
Chaichian, M. ;
Gitman, D. M. ;
Tureanu, A. .
PHYSICS LETTERS B, 2009, 682 (02) :235-239
[2]  
[Anonymous], 1994, NONCOMMUTATIVE GEOME
[3]   Hydrogen atom spectrum and the Lamb shift in noncommutative QED [J].
Chaichian, M ;
Sheikh-Jabbari, MM ;
Tureanu, A .
PHYSICAL REVIEW LETTERS, 2001, 86 (13) :2716-2719
[4]   Non-commutativity of space-time and the hydrogen atom spectrum [J].
Chaichian, M ;
Sheikh-Jabbari, MM ;
Tureanu, A .
EUROPEAN PHYSICAL JOURNAL C, 2004, 36 (02) :251-252
[5]   Aharonov-Bohm effect in noncommutative spaces [J].
Chaichian, M ;
Presnajder, P ;
Sheikh-Jabbari, MM ;
Tureanu, A .
PHYSICS LETTERS B, 2002, 527 (1-2) :149-154
[6]   Quantum theories on noncommutative spaces with nontrivial topology: Aharonov-Bohm and Casimir effects [J].
Chaichian, M ;
Demichev, A ;
Presnajder, P ;
Sheikh-Jabbari, MM ;
Tureanu, A .
NUCLEAR PHYSICS B, 2001, 611 (1-3) :383-402
[7]   Gauge covariance of the Aharonov-Bohm phase in noncommutative quantum mechanics [J].
Chaichian, Masud ;
Langvik, Miklos ;
Sasaki, Shin ;
Tureanu, Anca .
PHYSICS LETTERS B, 2008, 666 (02) :199-204
[8]  
CONNES A, 1985, PUBL MATH-PARIS, P257
[9]   THE QUANTUM STRUCTURE OF SPACETIME AT THE PLANCK-SCALE AND QUANTUM-FIELDS [J].
DOPLICHER, S ;
FREDENHAGEN, K ;
ROBERTS, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :187-220
[10]   NONCOMMUTATIVE DIFFERENTIAL GEOMETRY OF MATRIX ALGEBRAS [J].
DUBOISVIOLETTE, M ;
KERNER, R ;
MADORE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (02) :316-321