Nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon (UNCD/a-C:H) films were grown by coaxial arc plasma deposition in the ambient of nitrogen and hydrogen mixed gases. Synthesized films were structurally investigated by X-ray photoemission and near-edge X-ray absorption fine structure spectroscopies. A heterojunction with p-type Si substrate was fabricated to study the ultraviolet photodetection properties of the film. Capacitance-voltage measurements assure the expansion of a depletion region into the film side. Current-voltage curves in the dark showed a good rectifying behaviour in the bias voltages range between +/- 5 V. Under 254 nm monochromatic light, the heterojunction shows a capability of deep ultraviolet light detection, which can be attribute to the existence of UNCD grains. As the diode was cooled from 300 K down to 150 K, the detectivity has a notable enhancement from 1.94 x 10(5) cm Hz(1/2) W-1 at 300 K to 5.11 x 10(10) cm Hz(1/2) W-1 at 150 K, which is mainly due to a remarkable reduction in the leakage current at low temperatures. It was experimentally demonstrated that nitrogen-doped UNCD/a-C:H film works as ultraviolet- range photovoltaic material.