TIME AVERAGES FOR KINETIC FOKKER-PLANCK EQUATIONS

被引:2
作者
Brigati, Giovanni [1 ,2 ]
机构
[1] Univ Paris 09, Univ PSL, CEREMADE, CNRS, F-75016 Paris, France
[2] Univ Pavia, Via Ferrata 5, I-27100 Pavia, Italy
关键词
  Kinetic Fokker-Planck equation; Ornstein-Uhlenbeck equation; time average; local equilibria; Lions' lemma; Poincare? inequalities; hypocoercivity; EQUILIBRIUM; HYPOCOERCIVITY; CONVERGENCE; SYSTEMS; TREND; RATES;
D O I
10.3934/krm.2022037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider kinetic Fokker-Planck (or Vlasov-Fokker-Planck) equa-tions on the torus with Maxwellian or fat tail local equilibria. Results based on weak norms have recently been achieved by S. Armstrong and J.-C. Mourrat in case of Maxwellian local equilibria. Using adapted Poincare ' and Lions-type inequalities, we develop an explicit and constructive method for estimating the decay rate of time averages of norms of the solutions, which covers vari-ous regimes corresponding to subexponential, exponential and superexponen-tial (including Maxwellian) local equilibria. As a consequence, we also derive hypocoercivity estimates, which are compared to similar results obtained by other techniques.
引用
收藏
页码:524 / 539
页数:16
相关论文
共 45 条
[1]  
Achleitner F., 2019, STOCH DYNAM, V282, P241, DOI 10.1007/978-3-030-15096-9_6
[2]  
Achleitner F., 2016, SPRINGER P MATH STAT, V162, P1, DOI 10.1007/978-3-319-32144-8_1
[3]   ON MULTI-DIMENSIONAL HYPOCOERCIVE BGK MODELS [J].
Achleitner, Franz ;
Arnold, Anton ;
Carlen, Eric A. .
KINETIC AND RELATED MODELS, 2018, 11 (04) :953-1009
[4]  
Albritton D, 2021, Arxiv, DOI arXiv:1902.04037
[5]   On a lemma of Jacques-Louis Lions and its relation to other fundamental results [J].
Amrouche, Cherif ;
Ciarlet, Philippe G. ;
Mardare, Cristinel .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (02) :207-226
[6]  
[Anonymous], 1979, Soviet Math. Dokl.
[7]  
[Anonymous], 2009, HYPOCOERCIVITY
[8]  
[Anonymous], 2012, The pullback equation for differential forms
[9]  
Arnold A, 2014, Arxiv, DOI arXiv:1409.5425
[10]  
Bakry D., 1985, Lecture Notes in Math., V1123, P177