Quasiperiodic solutions of the Korteweg-de Vries equation

被引:2
|
作者
Zaiko, YN [1 ]
机构
[1] Volga Reg Acad State Serv, Saratov, Russia
关键词
Phase Transition; Wave Propagation; Periodic Solution; Structure System; Harmonic Generation;
D O I
10.1134/1.1467286
中图分类号
O59 [应用物理学];
学科分类号
摘要
Physical premises for the appearance of quasiperiodic solutions of the Korteweg-de Vries (KdV) equation are considered. Such solutions appear near singularities of the KdV equation describing, for example, polarization waves in a ferroelectric substance featuring the first-order phase transition or in an electron beam-waveguide structure system. The presence of a singularity results in that the velocity of longwave perturbations in the system becomes imaginary, which corresponds to the wave propagation in the range of nontransparency. The second harmonic generation is related to modulation of the initial periodic solution at the second (lower) frequency. (C) 2002 MAIK "Nauka/Interperiodica".
引用
收藏
页码:235 / 236
页数:2
相关论文
共 50 条
  • [1] Quasiperiodic solutions of the Korteweg-de Vries equation
    Yu. N. Zaiko
    Technical Physics Letters, 2002, 28 : 235 - 236
  • [2] On quasiperiodic wave solutions and integrability to a generalized -dimensional Korteweg-de Vries equation
    Xu, Mei-Juan
    Tian, Shou-Fu
    Tu, Jian-Min
    Ma, Pan-Li
    Zhang, Tian-Tian
    NONLINEAR DYNAMICS, 2015, 82 (04) : 2031 - 2049
  • [3] On the singular solutions of the Korteweg-de Vries equation
    S. I. Pokhozhaev
    Mathematical Notes, 2010, 88 : 741 - 747
  • [4] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [5] Computability of solutions of the Korteweg-de Vries equation
    Gay, W
    Zhang, BY
    Zhong, N
    MATHEMATICAL LOGIC QUARTERLY, 2001, 47 (01) : 93 - 110
  • [6] Primitive solutions of the Korteweg-de Vries equation
    Dyachenko, S. A.
    Nabelek, P.
    Zakharov, D. V.
    Zakharov, V. E.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 202 (03) : 334 - 343
  • [7] Complexiton solutions to the Korteweg-de Vries equation
    Ma, WX
    PHYSICS LETTERS A, 2002, 301 (1-2) : 35 - 44
  • [8] Accelerating solutions of the Korteweg-de Vries equation
    Winkler, Maricarmen A.
    Asenjo, Felipe A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (49)
  • [9] Analyticity of solutions of the Korteweg-de Vries equation
    Tarama, S
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2004, 44 (01): : 1 - 32
  • [10] On the Singular Solutions of the Korteweg-de Vries Equation
    Pokhozhaev, S. I.
    MATHEMATICAL NOTES, 2010, 88 (5-6) : 741 - 747