Quasiperiodic solutions of the Korteweg-de Vries equation

被引:2
|
作者
Zaiko, YN [1 ]
机构
[1] Volga Reg Acad State Serv, Saratov, Russia
关键词
Phase Transition; Wave Propagation; Periodic Solution; Structure System; Harmonic Generation;
D O I
10.1134/1.1467286
中图分类号
O59 [应用物理学];
学科分类号
摘要
Physical premises for the appearance of quasiperiodic solutions of the Korteweg-de Vries (KdV) equation are considered. Such solutions appear near singularities of the KdV equation describing, for example, polarization waves in a ferroelectric substance featuring the first-order phase transition or in an electron beam-waveguide structure system. The presence of a singularity results in that the velocity of longwave perturbations in the system becomes imaginary, which corresponds to the wave propagation in the range of nontransparency. The second harmonic generation is related to modulation of the initial periodic solution at the second (lower) frequency. (C) 2002 MAIK "Nauka/Interperiodica".
引用
收藏
页码:235 / 236
页数:2
相关论文
共 50 条
  • [1] Quasiperiodic solutions of the Korteweg-de Vries equation
    Yu. N. Zaiko
    Technical Physics Letters, 2002, 28 : 235 - 236
  • [2] Recurrent solutions of the Korteweg-de Vries equation with boundary force
    Chen, Mo
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (01) : 112 - 126
  • [3] New class of solutions of the Korteweg-de Vries-Burgers equation
    Zayko, YN
    Nefedov, IS
    APPLIED MATHEMATICS LETTERS, 2001, 14 (01) : 115 - 121
  • [4] Periodic and almost periodic solutions for the damped Korteweg-de Vries equation
    Chen, Mo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 7554 - 7565
  • [5] Conservation laws, periodic and rational solutions for an extended modified Korteweg-de Vries equation
    Wang, Xin
    Zhang, Jianlin
    Wang, Lei
    NONLINEAR DYNAMICS, 2018, 92 (04) : 1507 - 1516
  • [6] Investigation of the harmonic composition of the periodic solution of the Korteweg-de Vries equation
    Zaiko, YN
    TECHNICAL PHYSICS LETTERS, 1999, 25 (02) : 126 - 127
  • [7] Investigation of the harmonic composition of the periodic solution of the Korteweg-de Vries equation
    Yu. N. Zaiko
    Technical Physics Letters, 1999, 25 : 126 - 127
  • [8] Reduction and analytic solutions of a variable-coefficient Korteweg-de Vries equation in a fluid, crystal or plasma
    Chen, Yu-Qi
    Tian, Bo
    Qu, Qi-Xing
    Li, He
    Zhao, Xue-Hui
    Tian, He-Yuan
    Wang, Meng
    MODERN PHYSICS LETTERS B, 2020, 34 (26):
  • [9] Recurrent solutions of the Korteweg–de Vries equation with boundary force
    Mo Chen
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 112 - 126
  • [10] An Improved Perturbation Method to Study Korteweg-de Vries-Burgers Equation
    Zephania, C. F. Sagar
    Harisankar, P. C.
    Sil, Tapas
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (02)