Modulation instability in nonlinear negative-index material

被引:158
作者
Wen, SC [1 ]
Wang, YW
Su, WH
Xiang, YJ
Fu, XQ
Fan, DY
机构
[1] Hunan Univ, Lab Informat Optoelect, Changsha 410082, Peoples R China
[2] Hunan Univ, Sch Comp & Commun, Changsha 410082, Peoples R China
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 03期
关键词
D O I
10.1103/PhysRevE.73.036617
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate modulation instability (MI) in negative-index material (NIM) with a Kerr nonlinear polarization based on a derived (3+1)-dimensional nonlinear Schrodinger equation for ultrashort pulse propagation. By a standard linear stability analysis, we obtain the expression for instability gain, which unifies the temporal, spatial, and spatiotemporal MI. It is shown that negative refraction not only brings some new features to MI, but also makes MI possible in ordinary material in which it is otherwise impossible. For example, spatial MI can occur in the defocusing regime, while it only occurs in the focusing regime in ordinary material. Spatiotemporal MI can appear in NIM in the case of anomalous dispersion and defocusing nonlinearity, while it cannot appear in ordinary material in the same case. We believe that the difference between the MI in NIM and in ordinary material is due to the fact that negative refraction reverses the sign of the diffraction term, with the signs of dispersion and nonlinearity unchanged. The most notable property of MI in NIM is that it can be manipulated by engineering the self-steepening effect by choosing the size of split-ring resonator circuit elements. To sum up the MI in ordinary material and in NIM, MI may occur for all the combinations of dispersion and nonlinearity.
引用
收藏
页数:6
相关论文
共 26 条
[1]  
Agrawal G., 2001, Nonlinear Fibers Optics, V3rd
[2]   Negative refraction at infrared wavelengths in a two-dimensional photonic crystal -: art. no. 073902 [J].
Berrier, A ;
Mulot, M ;
Swillo, M ;
Qiu, M ;
Thylén, L ;
Talneau, A ;
Anand, S .
PHYSICAL REVIEW LETTERS, 2004, 93 (07)
[3]   Bright and dark gap solitons in a negative index Fabry-Perot etalon [J].
D'Aguanno, G ;
Mattiucci, N ;
Scalora, M ;
Bloemer, MJ .
PHYSICAL REVIEW LETTERS, 2004, 93 (21)
[4]   Dispersion-free pulse propagation in a negative-index material [J].
D'Aguanno, G ;
Akozbek, N ;
Mattiucci, N ;
Scalora, M ;
Bloemer, MJ ;
Zheltikov, AM .
OPTICS LETTERS, 2005, 30 (15) :1998-2000
[5]   Spatial modulational instability and multisolitonlike generation in a quadratically nonlinear optical medium [J].
Fuerst, RA ;
Baboiu, DM ;
Lawrence, B ;
Torruellas, WE ;
Stegeman, GI ;
Trillo, S ;
Wabnitz, S .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2756-2759
[6]   Wave packet propagation into a negative index medium [J].
Huang, XB ;
Schaich, WL .
AMERICAN JOURNAL OF PHYSICS, 2004, 72 (09) :1232-1240
[7]   INSTABILITY GROWTH AND FILAMENTATION OF VERY INTENSE LASER-BEAMS IN SELF-FOCUSING MEDIA [J].
KOTHARI, NC ;
ABBI, SC .
PROGRESS OF THEORETICAL PHYSICS, 1990, 83 (03) :414-442
[8]   Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials [J].
Kourakis, I ;
Shukla, PK .
PHYSICAL REVIEW E, 2005, 72 (01)
[9]   Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements [J].
Lapine, M ;
Gorkunov, M ;
Ringhofer, KH .
PHYSICAL REVIEW E, 2003, 67 (06) :4
[10]   Coupled nonlinear Schrodinger field equations for electromagnetic wave propagation in nonlinear left-handed materials [J].
Lazarides, N ;
Tsironis, GP .
PHYSICAL REVIEW E, 2005, 71 (03)