Scalable Hierarchical Network-on-Chip Architecture for Spiking Neural Network Hardware Implementations

被引:89
作者
Carrillo, Snaider [1 ]
Harkin, Jim [1 ]
McDaid, Liam J. [1 ]
Morgan, Fearghal [2 ]
Pande, Sandeep [2 ]
Cawley, Seamus [2 ]
McGinley, Brian [2 ]
机构
[1] Univ Ulster, Intelligent Syst Res Ctr, Sch Comp & Intelligent Syst, Derry BT48 7JL, North Ireland
[2] Natl Univ Ireland, Bioinspired Elect & Reconfigurable Comp Res Grp, Galway, Ireland
关键词
Interconnection architecture; network-on-chip; neurocomputers; real-time distributed; spiking neural networks; INTERCONNECT;
D O I
10.1109/TPDS.2012.289
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Spiking neural networks (SNNs) attempt to emulate information processing in the mammalian brain based on massively parallel arrays of neurons that communicate via spike events. SNNs offer the possibility to implement embedded neuromorphic circuits, with high parallelism and low power consumption compared to the traditional von Neumann computer paradigms. Nevertheless, the lack of modularity and poor connectivity shown by traditional neuron interconnect implementations based on shared bus topologies is prohibiting scalable hardware implementations of SNNs. This paper presents a novel hierarchical network-on-chip (H-NoC) architecture for SNN hardware, which aims to address the scalability issue by creating a modular array of clusters of neurons using a hierarchical structure of low and high-level routers. The proposed H-NoC architecture incorporates a spike traffic compression technique to exploit SNN traffic patterns and locality between neurons, thus reducing traffic overhead and improving throughput on the network. In addition, adaptive routing capabilities between clusters balance local and global traffic loads to sustain throughput under bursting activity. Analytical results show the scalability of the proposed H-NoC approach under different scenarios, while simulation and synthesis analysis using 65-nm CMOS technology demonstrate high-throughput, low-cost area, and power consumption per cluster, respectively.
引用
收藏
页码:2451 / 2461
页数:11
相关论文
共 35 条
[1]   Efficient Physical Embedding of Topologically Complex Information Processing Networks in Brains and Computer Circuits [J].
Bassett, Danielle S. ;
Greenfield, Daniel L. ;
Meyer-Lindenberg, Andreas ;
Weinberger, Daniel R. ;
Moore, Simon W. ;
Bullmore, Edward T. .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (04)
[2]   Networks on chips: A new SoC paradigm [J].
Benini, L ;
De Micheli, G .
COMPUTER, 2002, 35 (01) :70-+
[3]  
Blumrich M., 2003, RC23025W0312022 IBM, V23025
[4]   A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems [J].
Bruederle, Daniel ;
Petrovici, Mihai A. ;
Vogginger, Bernhard ;
Ehrlich, Matthias ;
Pfeil, Thomas ;
Millner, Sebastian ;
Gruebl, Andreas ;
Wendt, Karsten ;
Mueller, Eric ;
Schwartz, Marc-Olivier ;
de Oliveira, Dan Husmann ;
Jeltsch, Sebastian ;
Fieres, Johannes ;
Schilling, Moritz ;
Mueller, Paul ;
Breitwieser, Oliver ;
Petkov, Venelin ;
Muller, Lyle ;
Davison, Andrew P. ;
Krishnamurthy, Pradeep ;
Kremkow, Jens ;
Lundqvist, Mikael ;
Muller, Eilif ;
Partzsch, Johannes ;
Scholze, Stefan ;
Zuehl, Lukas ;
Mayr, Christian ;
Destexhe, Alain ;
Diesmann, Markus ;
Potjans, Tobias C. ;
Lansner, Anders ;
Schueffny, Rene ;
Schemmel, Johannes ;
Meier, Karlheinz .
BIOLOGICAL CYBERNETICS, 2011, 104 (4-5) :263-296
[5]  
Carrillo S., 2012, 2012 Sixth IEEE/ACM International Symposium on Networks-on-Chip (NoCS), P83, DOI 10.1109/NOCS.2012.17
[6]   Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip routers [J].
Carrillo, Snaider ;
Harkin, Jim ;
McDaid, Liam ;
Pande, Sandeep ;
Cawley, Seamus ;
McGinley, Brian ;
Morgan, Fearghal .
NEURAL NETWORKS, 2012, 33 :42-57
[7]  
Carrillo S, 2011, LECT NOTES COMPUT SC, V6791, P77, DOI 10.1007/978-3-642-21735-7_10
[8]  
Carrillo S, 2010, LECT NOTES COMPUT SC, V6274, P133, DOI 10.1007/978-3-642-15323-5_12
[9]   Hardware spiking neural network prototyping and application [J].
Cawley, Seamus ;
Morgan, Fearghal ;
McGinley, Brian ;
Pande, Sandeep ;
McDaid, Liam ;
Carrillo, Snaider ;
Harkin, Jim .
GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2011, 12 (03) :257-280
[10]   A Programmable Facilitating Synapse Device [J].
Chen, Yajie ;
McDaid, Liam ;
Hall, Steve ;
Kelly, Peter .
2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, :1615-+