An Approximation Algorithm for the Dynamic k-level Facility Location Problem

被引:0
作者
Wang, Limin [1 ]
Zhang, Zhao [2 ]
Xu, Dachuan [3 ]
Zhang, Xiaoyan [4 ,5 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China
[2] Zhejiang Normal Univ, Coll Math & Comp Sci, Jinhua 321004, Zhejiang, Peoples R China
[3] Beijing Univ Technol, Beijing Inst Sci & Engn Comp, Beijing 100124, Peoples R China
[4] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[5] Nanjing Normal Univ, Inst Math, Nanjing 210023, Peoples R China
来源
ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2019 | 2019年 / 11640卷
基金
中国国家自然科学基金;
关键词
Approximation algorithm; Primal-dual; Dynamic; Facility location;
D O I
10.1007/978-3-030-27195-4_26
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we consider the dynamic k-level facility location problem, which is a generalization of the uncapacitated k-level facility location problem when considering time factor. We present a combinatorial primal-dual approximation algorithm for the problem which finds a solution within 6 times the optimum. This approximation ratio under a dynamic setting coincides with that of the simple dual ascent 6-approximation algorithm for the (static) multilevel facility location problem (Bumb, 2001) with a weak triangle inequality property.
引用
收藏
页码:284 / 291
页数:8
相关论文
共 13 条
[1]   A 3-approximation algorithm for the k-level uncapacitated facility location problem [J].
Aardal, K ;
Chudak, FA ;
Shmoys, DB .
INFORMATION PROCESSING LETTERS, 1999, 72 (5-6) :161-167
[2]   Improved combinatorial approximation algorithms for the k-level facility location problem [J].
Ageev, A ;
Ye, YY ;
Zhang, JW .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 18 (01) :207-217
[3]  
Bumb A, 2001, LECT NOTES COMPUT SC, V2129, P55
[4]  
Chen B., 2010, LNCS, P253, DOI [10.1007/978-3-642-14355-7_26, DOI 10.1007/978-3-642-14355-7_26]
[5]  
Cornunejols G., 1990, Discrete Location Theory, P119
[6]   Greedy strikes back: Improved facility location algorithms [J].
Guha, S ;
Khuller, S .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1999, 31 (01) :228-248
[7]   Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation [J].
Jain, K ;
Vazirani, VV .
JOURNAL OF THE ACM, 2001, 48 (02) :274-296
[8]  
Mahdian M, 2002, LECT NOTES COMPUT SC, V2462, P229
[9]   Cost-Distance: Two metric network design [J].
Meyerson, A ;
Munagala, K ;
Plotkin, S .
41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2000, :624-630
[10]  
Shmoys D.B., 1997, APPROXIMATION ALGORI, V1997