Sea-Level Rise Impact on a Salt Marsh System of the Lower St. Johns River

被引:34
作者
Hagen, Scott C. [1 ]
Morris, James T. [2 ,3 ]
Bacopoulos, Peter [4 ]
Weishampel, John F. [5 ]
机构
[1] Univ Cent Florida, Dept Civil Environm & Construct Engn, Orlando, FL 32816 USA
[2] Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA
[3] Univ S Carolina, Belle W Baruch Inst Marine & Coastal Sci, Columbia, SC 29208 USA
[4] Univ N Florida, Taylor Engn Res Inst, Jacksonville, FL 32224 USA
[5] Univ Cent Florida, Dept Biol, Orlando, FL 32816 USA
基金
美国海洋和大气管理局;
关键词
Climate change; Sea level rise; Sustainability; Salt marsh; Spartina alterniflora; Standing biomass density; Hydroperiod; Mean low water; Mean high water; Lower St. Johns River; ELEVATION; ESTUARIES; TRENDS;
D O I
10.1061/(ASCE)WW.1943-5460.0000177
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The impact of sea-level rise on salt marsh sustainability is examined for the lower St. Johns River and associated salt marsh (Spartina alterniflora) system. A two-dimensional hydrodynamic model, forced by tides and sea-level rise, is coupled with a zero-dimensional marsh model to estimate the level of biomass productivity of S. alterniflora across the salt marsh landscape for present day and anticipated future conditions (i.e., when subjected to sea-level rise). The hydrodynamic model results show mean low water (MLW) to be highly spatially variable with a SD of +/- 0.18 m and mean high water (MHW) to be less spatially variable with a SD +/- 0.03 m. The spatial variability of MLW and MHW is particularly evident within the tidal creeks of the salt marsh. MLW and MHW are sensitive to sea-level rise and respond in a nonlinear fashion (i.e., MLW and MHW elevate by an amount that is not proportional to the level of sea-level rise). The coupled hydrodynamic-marsh model results illustrate the spatial heterogeneity of biomass productivity and indicate marsh vulnerability to sea-level rise. The model is then used to demonstrate an application of engineered accretion that can help sustain a marsh that is exposed to sea-level rise. DOI: 10.1061/(ASCE)WW.1943-5460.0000177. (C) 2013 American Society of Civil Engineers.
引用
收藏
页码:118 / 125
页数:8
相关论文
共 32 条
[1]   Trends in Sea-Level Trend Analysis [J].
Baart, Fedor ;
van Koningsveld, Mark ;
Stive, M. J. F. .
JOURNAL OF COASTAL RESEARCH, 2012, 28 (02) :311-315
[2]   Observation and simulation of winds and hydrodynamics in St. Johns and Nassau Rivers [J].
Bacopoulos, Peter ;
Hagen, Scott C. ;
Cox, Andrew T. ;
Dally, William R. ;
Bratos, Steven M. .
JOURNAL OF HYDROLOGY, 2012, 420 :391-402
[3]   Unstructured mesh assessment for tidal model of the South Atlantic Bight and its estuaries [J].
Bacopoulos, Peter ;
Parrish, D. Michael ;
Hagen, Scott C. .
JOURNAL OF HYDRAULIC RESEARCH, 2011, 49 (04) :487-502
[4]  
Brody R. W, 1994, SJRWMD TECHNICAL PUB, VSJ94-2
[5]  
Cahoon DR, 2006, ECOL STUD-ANAL SYNTH, V190, P271
[6]  
Center for Operational and Oceanographic Products and Services, 2011, TID CURR DAT
[7]   A 20th century acceleration in global sea-level rise [J].
Church, JA ;
White, NJ .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (01)
[8]   Estuaries of the south Atlantic coast of North America: Their geographical signatures [J].
Dame, R ;
Alber, M ;
Allen, D ;
Mallin, M ;
Montague, C ;
Lewitus, A ;
Chalmers, A ;
Gardner, R ;
Gilman, C ;
Kjerfve, B ;
Pinckney, J ;
Smith, N .
ESTUARIES, 2000, 23 (06) :793-819
[9]   NUMERICAL MODELS OF SALT MARSH EVOLUTION: ECOLOGICAL, GEOMORPHIC, AND CLIMATIC FACTORS [J].
Fagherazzi, Sergio ;
Kirwan, Matthew L. ;
Mudd, Simon M. ;
Guntenspergen, Glenn R. ;
Temmerman, Stijn ;
D'Alpaos, Andrea ;
van de Koppel, Johan ;
Rybczyk, John M. ;
Reyes, Enrique ;
Craft, Chris ;
Clough, Jonathan .
REVIEWS OF GEOPHYSICS, 2012, 50
[10]   Coastal impacts due to sea-level rise [J].
FitzGerald, Duncan M. ;
Fenster, Michael S. ;
Argow, Britt A. ;
Buynevich, Ilya V. .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2008, 36 :601-647