Moire Phonons in Magic-Angle Twisted Bilayer Graphene

被引:30
|
作者
Liu, Xiaoqian [1 ]
Peng, Ran [1 ]
Sun, Zhaoru [1 ]
Liu, Jianpeng [1 ,2 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[2] ShanghaiTech Univ, ShanghaiTech Lab Topol Phys, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
twisted bilayer graphene; moire phonons; electron-phonon coupling; charge order; deep potential molecular dynamics;
D O I
10.1021/acs.nanolett.2c02010
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Magic-angle twisted bilayer graphene (TBG) has attracted significant interest recently due to the discoveries of diverse correlated and topological states. In this work, we study the phonon properties in magic-angle TBG based on many-body classical potential and interatomic forces generated by a deep neural network trained with data from ab initio calculations. We have discovered a number of soft modes which can exhibit dipolar, quadrupolar, and octupolar vibrational patterns in real space, as well as some time-reversal breaking chiral phonon modes. We have further studied the phonon effects on the electronic structures by freezing certain soft phonon modes. We find that if a soft quadrupolar phonon mode is assumed to be frozen, the system would exhibit a charge order which is perfectly consistent with recent experiments. Moreover, once some low-frequency C-2z-breaking modes get frozen, the Dirac points at the charge neutrality point would be gapped out, which provides an alternative perspective to the origin of correlated insulator state at charge neutrality point.
引用
收藏
页码:7791 / 7797
页数:7
相关论文
共 50 条
  • [21] Flat band carrier confinement in magic-angle twisted bilayer graphene
    Tilak, Nikhil
    Lai, Xinyuan
    Wu, Shuang
    Zhang, Zhenyuan
    Xu, Mingyu
    Ribeiro, Raquel de Almeida
    Canfield, Paul C.
    Andrei, Eva Y.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [22] Strongly correlated Chern insulators in magic-angle twisted bilayer graphene
    Kevin P. Nuckolls
    Myungchul Oh
    Dillon Wong
    Biao Lian
    Kenji Watanabe
    Takashi Taniguchi
    B. Andrei Bernevig
    Ali Yazdani
    Nature, 2020, 588 : 610 - 615
  • [23] Flat band carrier confinement in magic-angle twisted bilayer graphene
    Nikhil Tilak
    Xinyuan Lai
    Shuang Wu
    Zhenyuan Zhang
    Mingyu Xu
    Raquel de Almeida Ribeiro
    Paul C. Canfield
    Eva Y. Andrei
    Nature Communications, 12
  • [24] Magic-Angle Twisted Bilayer Graphene as a Topological Heavy Fermion Problem
    Song, Zhi-Da
    Bernevig, B. Andrei
    PHYSICAL REVIEW LETTERS, 2022, 129 (04)
  • [25] Charge Distribution and Spin Textures in Magic-angle Twisted Bilayer Graphene
    Sboychakov, A. O.
    Rozhkov, A. V.
    Rakhmanov, A. L.
    JETP LETTERS, 2022, 116 (10) : 729 - 736
  • [26] Strongly interacting Hofstadter states in magic-angle twisted bilayer graphene
    He, Minhao
    Wang, Xiaoyu
    Cai, Jiaqi
    Herzog-Arbeitman, Jonah
    Taniguchi, Takashi
    Watanabe, Kenji
    Stern, Ady
    Bernevig, B. Andrei
    Yankowitz, Matthew
    Vafek, Oskar
    Xu, Xiaodong
    arXiv,
  • [27] Revealing the Thermal Properties of Superconducting Magic-Angle Twisted Bilayer Graphene
    Di Battista, Giorgio
    Seifert, Paul
    Watanabe, Kenji
    Taniguchi, Takashi
    Fong, Kin Chung
    Principi, Alessandro
    Efetov, Dmitri K.
    NANO LETTERS, 2022, 22 (16) : 6465 - 6470
  • [28] Charge Distribution and Spin Textures in Magic-Angle Twisted Bilayer Graphene
    A. O. Sboychakov
    A. V. Rozhkov
    A. L. Rakhmanov
    JETP Letters, 2022, 116 : 729 - 736
  • [29] Internal screening and dielectric engineering in magic-angle twisted bilayer graphene
    Pizarro, J. M.
    Rosner, M. M.
    Thomale, R.
    Valenti, R.
    Wehling, T. O.
    PHYSICAL REVIEW B, 2019, 100 (16)
  • [30] Superconductivity from collective excitations in magic-angle twisted bilayer graphene
    Sharma, Girish
    Trushin, Maxim
    Sushkov, Oleg P.
    Vignale, Giovanni
    Adam, Shaffique
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):