Role of lattice defects in catalytic activities of graphene clusters for fuel cells

被引:190
作者
Zhang, Lipeng [1 ]
Xu, Quan [2 ]
Niu, Jianbing [1 ]
Xia, Zhenhai [1 ,3 ,4 ]
机构
[1] Dept Mat Sci & Engn, Denton, TX 76203 USA
[2] China Univ Petr, Inst New Energy, Beijing 102248, Peoples R China
[3] Univ N Texas, Dept Chem, Denton, TX 76203 USA
[4] Northwestern Polytech Univ, Sch Mat Sci & Engn, Xian 710072, Peoples R China
基金
美国国家科学基金会;
关键词
OXYGEN REDUCTION REACTION; METAL-FREE ELECTROCATALYSTS; NITROGEN-DOPED GRAPHENE; GRAPHITE; SHEETS;
D O I
10.1039/c5cp02014j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Defects are common but important in graphene, which could significantly tailor the electronic structures and physical and chemical properties. In this study, the density functional theory (DFT) method was applied to study the electronic structure and catalytic properties of graphene clusters containing various point and line defects. The electron transfer processes in oxygen reduction reaction (ORR) on perfect and defective graphene clusters in fuel cells was simulated, and the free energy and reaction energy barrier of the elementary reactions were calculated to determine the reaction pathways. It was found that the graphene cluster with the point defect having pentagon rings at the zigzag edge, or line defects (grain boundaries) consisting of pentagon-pentagon-octagon or pentagon-heptagon chains also at the edges, shows the electrocatalytic capability for ORR. Four-electron and two-electron transfer processes could occur simultaneously on graphene clusters with certain types of defects. The energy barriers of the reactions are comparable to that of platinum(111). The catalytic active sites were determined on the defective graphene.
引用
收藏
页码:16733 / 16743
页数:11
相关论文
共 50 条
[1]   Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects [J].
Cervenka, J. ;
Katsnelson, M. I. ;
Flipse, C. F. J. .
NATURE PHYSICS, 2009, 5 (11) :840-844
[2]   Unraveling Oxygen Reduction Reaction Mechanisms on Carbon-Supported Fe-Phthalocyanine and Co-Phthalocyanine Catalysts in Alkaline Solutions [J].
Chen, Rongrong ;
Li, Haixia ;
Chu, Deryn ;
Wang, Guofeng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (48) :20689-20697
[3]   Structural coherency of graphene on Ir(111) [J].
Coraux, Johann ;
N'Diaye, Alpha T. ;
Busse, Carsten ;
Michely, Thomas .
NANO LETTERS, 2008, 8 (02) :565-570
[4]   Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model [J].
Cossi, M ;
Rega, N ;
Scalmani, G ;
Barone, V .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (06) :669-681
[5]   Structure and energetics of the vacancy in graphite [J].
El-Barbary, AA ;
Telling, RH ;
Ewels, CP ;
Heggie, MI ;
Briddon, PR .
PHYSICAL REVIEW B, 2003, 68 (14)
[6]   Free-standing graphene at atomic resolution [J].
Gass, Mhairi H. ;
Bangert, Ursel ;
Bleloch, Andrew L. ;
Wang, Peng ;
Nair, Rahul R. ;
Geim, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (11) :676-681
[7]   Graphene at the Edge: Stability and Dynamics [J].
Girit, Caglar Oe ;
Meyer, Jannik C. ;
Erni, Rolf ;
Rossell, Marta D. ;
Kisielowski, C. ;
Yang, Li ;
Park, Cheol-Hwan ;
Crommie, M. F. ;
Cohen, Marvin L. ;
Louie, Steven G. ;
Zettl, A. .
SCIENCE, 2009, 323 (5922) :1705-1708
[8]   Graphene Valley Filter Using a Line Defect [J].
Gunlycke, D. ;
White, C. T. .
PHYSICAL REVIEW LETTERS, 2011, 106 (13)
[9]   Direct evidence for atomic defects in graphene layers [J].
Hashimoto, A ;
Suenaga, K ;
Gloter, A ;
Urita, K ;
Iijima, S .
NATURE, 2004, 430 (7002) :870-873
[10]   Interplay between nitrogen dopants and native point defects in graphene [J].
Hou, Zhufeng ;
Wang, Xianlong ;
Ikeda, Takashi ;
Terakura, Kiyoyuki ;
Oshima, Masaharu ;
Kakimoto, Masa-aki ;
Miyata, Seizo .
PHYSICAL REVIEW B, 2012, 85 (16)