Laguerre semigroup and Dunkl operators

被引:84
作者
Ben Said, Salem [1 ]
Kobayashi, Toshiyuki [2 ]
Orsted, Bent [3 ]
机构
[1] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Tokyo, Grad Sch Math Sci, IPMU, Meguro Ku, Tokyo 1538914, Japan
[3] Univ Aarhus, Dept Math Sci, DK-8000 Aarhus C, Denmark
基金
日本学术振兴会;
关键词
Dunkl operators; generalized Fourier transform; Coxeter groups; Schrodinger model; holomorphic semigroup; Weil representation; Hermite semigroup; Hankel transforms; Heisenberg inequality; rational Cherednik algebra; minimal representation; DISCRETE DECOMPOSABILITY; MINIMAL REPRESENTATION; REDUCTIVE SUBGROUPS; ORTHOGONAL POLYNOMIALS; UNCERTAINTY PRINCIPLE; REFLECTION GROUPS; RESTRICTION; RESPECT; FORMULA; A(Q)(LAMBDA);
D O I
10.1112/S0010437X11007445
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a two-parameter family of actions omega(k,a) of the Lie algebra sl(2, R) by differential-difference operators on R-N\{0}. Here k is a multiplicity function for the Dunkl operators, and a > 0 arises from the interpolation of the two sl (2, R) actions on the Weil representation of Mp(N, R) and the minimal unitary representation of O(N + 1, 2). We prove that this action omega(k,a) lifts to a unitary representation of the universal covering of SL(2, R), and can even be extended to a holomorphic semigroup Omega(k,a). In the k equivalent to 0 case, our semigroup generalizes the Hermite semigroup studied by R. Howe (a = 2) and the Laguerre semigroup studied by the second author with G. Mano (a = 1). One boundary value of our semigroup Omega(k,a) provides us with (k, a)-generalized Fourier transforms F-k,F-a, which include the Dunkl transform D-k(a = 2) and a new unitary operator H-k(a = 1), namely a Dunkl-Hankel transform. We establish the inversion formula, a generalization of the Plancherel theorem, the Hecke identity, the Bochner identity, and a Heisenberg uncertainty relation for F-k,F-a. We also find kernel functions for Omega(k,a) and F-k,F-a for a = 1, 2 in terms of Bessel functions and the Dunkl intertwining operator.
引用
收藏
页码:1265 / 1336
页数:72
相关论文
共 62 条
[1]  
Andrews George E, 1999, Encyclopedia of Mathematics and its Applications, V71, DOI DOI 10.1017/CBO9781107325937
[2]  
[Anonymous], 2000, Represent. Theory
[3]  
[Anonymous], 1995, PRINCETON MATH SERIE, DOI DOI 10.1515/9781400883936
[4]   Segal-Bargmann transforms associated with finite Coxeter groups [J].
Ben Saïd, S ;
Orsted, B .
MATHEMATISCHE ANNALEN, 2006, 334 (02) :281-323
[5]   On the integrability of a representation of sl(2, R) [J].
Ben Said, Salem .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (02) :249-264
[6]   Generalized Fourier transforms Fk,a [J].
Ben Said, Salem ;
Kobayashi, Toshiyuki ;
Orsted, Bent .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (19-20) :1119-1124
[7]   MACDONALDS EVALUATION CONJECTURES AND DIFFERENCE FOURIER-TRANSFORM [J].
CHEREDNIK, I .
INVENTIONES MATHEMATICAE, 1995, 122 (01) :119-145
[8]  
Cherednik Ivan., 2002, IWAHORI HECKE ALGEBR, V1804, P1
[9]  
Debnath L., 2007, INTEGRAL TRANSFORMS
[10]   THE DUNKL TRANSFORM [J].
DEJEU, MFE .
INVENTIONES MATHEMATICAE, 1993, 113 (01) :147-162