Banach spaces with the Daugavet property

被引:115
|
作者
Kadets, VM
Shvidkoy, RV
Sirotkin, GG
Werner, D
机构
[1] Kharkov State Univ, Fac Mech & Math, UA-310077 Kharkov, Ukraine
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Indiana Univ Purdue Univ, Dept Math, Indianapolis, IN 46202 USA
关键词
Daugavet equation; Daugavet property; unconditional bases;
D O I
10.1090/S0002-9947-99-02377-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Banach space X is said to have the Daugavet property if every operator T : X --> X of rank 1 satisfies parallel to Id + T parallel to = 1 + parallel to T parallel to. We show that then every weakly compact operator satisfies this equation as well and that X contains a copy of l(1). However, X need not contain a copy of L-1. We also study pairs of spaces X subset of Y and operators T : X --> Y satisfying parallel to J + T parallel to = 1 + parallel to T parallel to, where J : X --> Y is the natural embedding. This leads to the result that a Banach space with the Daugavet property does not embed into a space with an unconditional basis. In another direction, we investigate spaces where the set of operators with parallel to Id + T parallel to = 1 + parallel to T parallel to is as small as possible and give characterisations in terms of a smoothness condition.
引用
收藏
页码:855 / 873
页数:19
相关论文
共 50 条
  • [21] Daugavet- and Delta-Points in Absolute Sums of Banach Spaces
    Haller, Rainis
    Pirk, Katriin
    Veeorg, Triinu
    JOURNAL OF CONVEX ANALYSIS, 2021, 28 (01) : 41 - 54
  • [22] The Daugavet property in spaces of vector-valued Lipschitz functions
    Zoca, Abraham Rueda
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (02)
  • [23] THE GEOMETRY OF Lp-SPACES OVER ATOMLESS MEASURE SPACES AND THE DAUGAVET PROPERTY
    Sanchez Perez, Enrique A.
    Werner, Dirk
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2011, 5 (01): : 167 - 180
  • [24] The polynomial Daugavet property for atomless L1(μ)-spaces
    Martin, Miguel
    Meri, Javier
    Popov, Mikhail
    ARCHIV DER MATHEMATIK, 2010, 94 (04) : 383 - 389
  • [25] The polynomial Daugavet property for atomless L1(μ)-spaces
    Miguel Martín
    Javier Merí
    Mikhail Popov
    Archiv der Mathematik, 2010, 94 : 383 - 389
  • [26] A relative version of Daugavet points and the Daugavet property
    Abrahamsen, Trond A.
    Aliaga, Ramon J.
    Lima, Vegard
    Martiny, Andre
    Perreau, Yoel
    Prochazka, Antonin
    Veeorg, Triinu
    STUDIA MATHEMATICA, 2024, 279 (03) : 191 - 241
  • [27] A characterisation of the Daugavet property in spaces of vector-valued Lipschitz functions
    Medina, Ruben
    Zoca, Abraham Rueda
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (01)
  • [28] Lushness, Numerical Index 1 and the Daugavet Property in Rearrangement Invariant Spaces
    Kadets, Vladimir
    Martin, Miguel
    Meri, Javier
    Werner, Dirk
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (02): : 331 - 348
  • [29] Daugavet property of Banach algebras of holomorphic functions and norm-attaining holomorphic functions
    Jung, Mingu
    ADVANCES IN MATHEMATICS, 2023, 421
  • [30] The Daugavet Property of C*-Algebras and Non-commutative Lp-Spaces
    Timur Oikhberg
    Positivity, 2002, 6 : 59 - 73