The fractional chromatic number of triangle-free subcubic graphs

被引:3
作者
Ferguson, David G. [1 ,2 ,7 ]
Kaiser, Tomas [3 ,4 ]
Kral, Daniel [5 ,6 ,8 ]
机构
[1] Univ Buckingham, Sch Business, Buckingham MK18 1EG, England
[2] London Sch Econ, Dept Math, London WC2A 2AE, England
[3] Univ W Bohemia, Dept Math, Inst Theoret Comp Sci, Plzen 30614, Czech Republic
[4] Univ W Bohemia, NTIS, European Ctr Excellence, Plzen 30614, Czech Republic
[5] Univ Warwick, DIMAP, Inst Math, Coventry CV4 7AL, W Midlands, England
[6] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[7] Charles Univ Prague, Dept Appl Math, CR-11800 Prague, Czech Republic
[8] Charles Univ Prague, Fac Math & Phys, Inst Comp Sci IUUK, Prague 11800, Czech Republic
关键词
INDEPENDENCE RATIO;
D O I
10.1016/j.ejc.2013.06.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Heckman and Thomas conjectured that the fractional chromatic number of any triangle-free subcubic graph is at most 14/5. Improving on estimates of Hatami and Zhu and of Lu and Peng, we prove that the fractional chromatic number of any triangle-free subcubic graph is at most 32/11 approximate to 2.909. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:184 / 220
页数:37
相关论文
共 11 条
[1]  
Diestel R., 2005, GRAPH THEORY, VThird
[2]  
Dvorak Z., PREPRINT
[3]  
Fajtlowicz S., 1978, Congr. Numer., V21, P269
[4]   THE FRACTIONAL CHROMATIC NUMBER OF GRAPHS OF MAXIMUM DEGREE AT MOST THREE [J].
Hatami, Hamed ;
Zhu, Xuding .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (04) :1762-1775
[5]   A new proof of the independence ratio of triangle-free cubic graphs [J].
Heckman, CC ;
Thomas, R .
DISCRETE MATHEMATICS, 2001, 233 (1-3) :233-237
[6]   SIZE AND INDEPENDENCE IN TRIANGLE-FREE GRAPHS WITH MAXIMUM DEGREE-3 [J].
JONES, KF .
JOURNAL OF GRAPH THEORY, 1990, 14 (05) :525-535
[7]   Cycles intersecting edge-cuts of prescribed sizes [J].
Kaiser, Tomas ;
Skrekovski, Riste .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (03) :861-874
[8]  
Liu C.Y., 2004, PREPRINT
[9]  
Lu Liqing, PREPRINT
[10]  
Scheinerman E. R., 2011, Fractional graph theory