Multiple solutions with precise sign for nonlinear parametric Robin problems

被引:113
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[2] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia
[3] Acad Romana, Simion Stoilow Math Inst, Bucharest, Romania
关键词
Nonlinear regularity; Nonlinear maximum principle; Robin p-Laplacian; Nodal and constant sign solutions; Extremal solutions; Morse theory; P-LAPLACIAN; ELLIPTIC-EQUATIONS; LOCAL MINIMIZERS; SPECTRUM;
D O I
10.1016/j.jde.2014.01.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a parametric nonlinear Robin problem driven by the p-Laplacian. We show that if the parameter lambda > (lambda) over cap (2) = the second eigenvalue of the Robin p-Laplacian, then the problem has at least three nontrivial solutions, two of constant sign and the third nodal. In the semilinear case (p = 2), we show that we can generate a second nodal solution. Our approach uses variational methods, truncation and perturbation techniques, and Morse theory. In the process we produce two useful remarks about the first two eigenvalues of the Robin p-Laplacian. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:2449 / 2479
页数:31
相关论文
共 24 条