Multiple solutions with precise sign for nonlinear parametric Robin problems

被引:114
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[2] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia
[3] Acad Romana, Simion Stoilow Math Inst, Bucharest, Romania
关键词
Nonlinear regularity; Nonlinear maximum principle; Robin p-Laplacian; Nodal and constant sign solutions; Extremal solutions; Morse theory; P-LAPLACIAN; ELLIPTIC-EQUATIONS; LOCAL MINIMIZERS; SPECTRUM;
D O I
10.1016/j.jde.2014.01.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a parametric nonlinear Robin problem driven by the p-Laplacian. We show that if the parameter lambda > (lambda) over cap (2) = the second eigenvalue of the Robin p-Laplacian, then the problem has at least three nontrivial solutions, two of constant sign and the third nodal. In the semilinear case (p = 2), we show that we can generate a second nodal solution. Our approach uses variational methods, truncation and perturbation techniques, and Morse theory. In the process we produce two useful remarks about the first two eigenvalues of the Robin p-Laplacian. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:2449 / 2479
页数:31
相关论文
共 24 条
[1]   THE SPECTRUM AND AN INDEX FORMULA FOR THE NEUMANN p-LAPLACIAN AND MULTIPLE SOLUTIONS FOR PROBLEMS WITH A CROSSING NONLINEARITY [J].
Aizicovici, S. ;
Papageorgiou, N. S. ;
Staicu, V. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (02) :431-456
[2]   ON A CLASS OF NONLINEAR DIRICHLET PROBLEMS WITH MULTIPLE SOLUTIONS [J].
AMBROSETTI, A ;
LUPO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (10) :1145-1150
[3]  
Ambrosetti A., 1979, Nonlinear Anal, V3, P635, DOI [10.1016/0362-546X(79)90092-0, DOI 10.1016/0362-546X(79)90092-0]
[4]  
[Anonymous], 1990, Variational Methods: Applications to Non-linear Partial Differential Equations and Hamiltonian Systems
[5]   Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations [J].
Azorero, JPG ;
Alonso, IP ;
Manfredi, JJ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (03) :385-404
[6]   Critical point theory on partially ordered Hilbert spaces [J].
Bartsch, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (01) :117-152
[7]  
BREZIS H, 1993, CR ACAD SCI I-MATH, V317, P465
[8]   The beginning of the Fucik spectrum for the p-Laplacian [J].
Cuesta, M ;
de Figueiredo, D ;
Gossez, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 159 (01) :212-238
[9]   On some quasilinear equations involving the p-Laplacian with Robin boundary conditions [J].
Duchateau, Xavier .
APPLICABLE ANALYSIS, 2013, 92 (02) :270-307
[10]  
Dunford N., 1958, LINEAR OPERATORS, VI