Eigenpairs of some imperfect pentadiagonal Toeplitz matrices

被引:2
作者
Losonczi, Laszlo [1 ]
机构
[1] Univ Debrecen, Inst Econ, Debrecen, Hungary
关键词
Toeplitz matrix; Imperfect Toeplitz matrix; Pentadiagonal; Tridiagonal matrices; Eigenpairs; TRIDIAGONAL MATRICES; DETERMINANT; ALGORITHM; EIGENVECTORS; EIGENVALUES;
D O I
10.1016/j.laa.2020.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider pentadiagonal (n + 1) x (n + 1) matrices with two sub-diagonals above and below the main diagonal at distances k and l from the main diagonal where 1 <= k < l <= n. We give explicit formulae for the eigenpairs of imperfect Toeplitz matrices in the case when (n + 1)/2 <= k. Imperfectness means that the first and last k elements of the main diagonal differ from the elements in the middle. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:282 / 298
页数:17
相关论文
共 26 条
[1]  
[Anonymous], 1928, Math. Z.
[2]   A reducing approach for symmetrically sparse banded and anti-banded matrices [J].
Bebiano, Natalia ;
Furtado, Susana .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 581 :36-50
[3]   Tridiagonal matrices with dominant diagonals and applications [J].
Chang, Winston W. ;
Chen, Tai-Liang .
OPERATIONS RESEARCH LETTERS, 2016, 44 (02) :231-233
[4]   An elementary algorithm for computing the determinant of pentadiagonal Toeplitz matrices [J].
Cinkir, Zubeyir .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (09) :2298-2305
[5]   Eigenpairs of a family of tridiagonal matrices: three decades later [J].
Da Fonseca, C. M. ;
Kowalenko, V .
ACTA MATHEMATICA HUNGARICA, 2020, 160 (02) :376-389
[6]  
da Fonseca C.M., 2020, ANN U SCI BP C
[7]   On the determinant of general pentadiagonal matrices [J].
da Fonseca, Carlos M. ;
Losonczi, Laszlo .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 97 (3-4) :507-523
[8]   Some comments on k-tridiagonal matrices: Determinant, spectra, and inversion [J].
da Fonseca, Carlos M. ;
Yilmaz, Fatih .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 :644-647
[9]  
El-Mikkawy M, 2015, MALAYS J MATH SCI, V9, P349
[10]   A new family of k-Fibonacci numbers [J].
El-Mikkawy, Moawwad ;
Sogabe, Tomohiro .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (12) :4456-4461