Artificial intelligence: a new frontier for anaesthesiology training

被引:9
作者
Arora, Anmol [1 ]
机构
[1] Univ Cambridge, Sch Clin Med, Cambridge, England
关键词
artificial intelligence; education; innovation; machine learning; neural networks; simulation; training;
D O I
10.1016/j.bja.2020.06.049
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
引用
收藏
页码:E407 / E408
页数:2
相关论文
共 6 条
  • [1] Dawson S, 2005, FUTURE HLTH ORG SYST, p[246, 272]
  • [2] Breast Ultrasound Image Synthesis using Deep Convolutional Generative Adversarial Networks
    Fujioka, Tomoyuki
    Mori, Mio
    Kubota, Kazunori
    Kikuchi, Yuka
    Katsuta, Leona
    Adachi, Mio
    Oda, Goshi
    Nakagawa, Tsuyoshi
    Kitazume, Yoshio
    Tateishi, Ukihide
    [J]. DIAGNOSTICS, 2019, 9 (04)
  • [3] Machine learning in anaesthesia: reactive, proactive ... predictive!
    Gambus, Pedro L.
    Jaramillo, Sebastian
    [J]. BRITISH JOURNAL OF ANAESTHESIA, 2019, 123 (04) : 401 - 403
  • [4] Artificial Intelligence in Anesthesiology Current Techniques, Clinical Applications, and Limitations
    Hashimoto, Daniel A.
    Witkowski, Elan
    Gao, Lei
    Meireles, Ozanan
    Rosman, Guy
    [J]. ANESTHESIOLOGY, 2020, 132 (02) : 379 - 394
  • [5] Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images
    Kazuhiro, Koshino
    Werner, Rudolf A.
    Toriumi, Fujio
    Javadi, Mehrbod S.
    Pomper, Martin G.
    Solnes, Lilja B.
    Verde, Franco
    Higuchi, Takahiro
    Rowe, Steven P.
    [J]. TOMOGRAPHY, 2018, 4 (04) : 159 - 163
  • [6] Machine learning and evidence-based training in technical skills
    Shorten, G.
    Srinivasan, K. Kallidaikurichi
    Reinertsen, I.
    [J]. BRITISH JOURNAL OF ANAESTHESIA, 2018, 121 (03) : 521 - 523