Modelling and simulation of the sea-landing of aerial vehicles using the Particle Finite Element Method

被引:14
作者
Ryzhakov, P.
Rossi, R.
Vina, A.
Onate, E.
机构
[1] Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Spain
[2] CIMSA Ingenieria de Sistemas, Spain
关键词
Fluid-structure interaction; Water landing; UAV; PFEM; Wedge impact; Incompressible flows; FLUID-STRUCTURE INTERACTION; INCOMPRESSIBLE FLOWS; APPROXIMATION; FORMULATION; CALCULUS; DYNAMICS;
D O I
10.1016/j.oceaneng.2013.03.015
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this paper the Particle Finite Element Method (PFEM) is applied to the simulation of the sea-landing of an unmanned aerial vehicle (UAV). The problem of interest consists in modelling the impact of the vehicle against the water surface, analyzing the main kinematic and dynamic quantities (such as loads exerted upon the capsule at the moment of the impact). The PFEM, a methodology well-suited for free-surface flow simulation is used for modelling the water while a rigid body model is chosen for the vehicle. The vehicle under consideration is characterized by low weight. This leads to difficulties in modelling the fluid-structure interaction using standard Dirichlet-Neumann coupling. We apply a modified partitioned strategy introducing the interface Laplacian into the pressure Poisson's equation for obtaining a convergent FSI solution. The paper concludes with an industrial example of a vehicle sea-landing modelled using PFEM. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:92 / 100
页数:9
相关论文
共 39 条
[1]  
Akkiraju N., 1995, P INT COMP GEOM SOFT
[2]   Numerical simulation of fluid-structure interaction by SPH [J].
Antoci, Carla ;
Gallati, Mario ;
Sibilla, Stefano .
COMPUTERS & STRUCTURES, 2007, 85 (11-14) :879-890
[3]   AN EXCURSION INTO LARGE ROTATIONS [J].
ARGYRIS, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :85-&
[4]   Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems [J].
Badia, Santiago ;
Nobile, Fabio ;
Vergara, Christian .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (33-36) :2768-2784
[5]   Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration [J].
Betsch, Peter ;
Siebert, Ralf .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (04) :444-473
[6]   The extended Delaunany tessellation [J].
Calvo, N ;
Idelsohn, SR ;
Oñate, E .
ENGINEERING COMPUTATIONS, 2003, 20 (5-6) :583-600
[7]  
Chobotov V.A., 1991, SPACECRAFT ATTITUDE
[8]   A numerical method for solving incompressible viscous flow problems (Reprinted from the Journal of Computational Physics, vol 2, pg 12-26, 1997) [J].
Chorin, AJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (02) :118-125
[9]   Stabilized finite element approximation of transient incompressible flows using orthogonal subscales [J].
Codina, R .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (39-40) :4295-4321
[10]   The fixed-mesh ALE approach for the numerical approximation of flows in moving domains [J].
Codina, Ramon ;
Houzeaux, Guillaume ;
Coppola-Owen, Herbert ;
Baiges, Joan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (05) :1591-1611