Simulating Large Quantum Circuits on a Small Quantum Computer

被引:165
作者
Peng, Tianyi [1 ]
Harrow, Aram W. [2 ]
Ozols, Maris [3 ,4 ]
Wu, Xiaodi [5 ,6 ]
机构
[1] MIT, Lab Informat & Decis Syst, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[3] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands
[4] QuSoft, NL-1098 XG Amsterdam, Netherlands
[5] Univ Maryland, Inst Adv Comp Studies, Dept Comp Sci, College Pk, MD 20742 USA
[6] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
关键词
COMPUTATION;
D O I
10.1103/PhysRevLett.125.150504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Limited quantum memory is one of the most important constraints for near-term quantum devices. Understanding whether a small quantum computer can simulate a larger quantum system, or execute an algorithm requiring more qubits than available, is both of theoretical and practical importance. In this Letter, we introduce cluster parameters K and d of a quantum circuit. The tensor network of such a circuit can be decomposed into clusters of size at most d with at most K qubits of inter-cluster quantum communication. We propose a cluster simulation scheme that can simulate any (K, d)-clustered quantum circuit on a d-qubit machine in time roughly 2(O(K)), with further speedups possible when taking more fine-grained circuit structure into account. We show how our scheme can be used to simulate clustered quantum systems-such as large molecules-that can be partitioned into multiple significantly smaller clusters with weak interactions among them. By using a suitable clustered ansatz, we also experimentally demonstrate that a quantum variational eigensolver can still achieve the desired performance for estimating the energy of the BeH2 molecule while running on a physical quantum device with half the number of required qubits.
引用
收藏
页数:6
相关论文
共 54 条
[1]  
[Anonymous], ARXIV161205903
[2]  
[Anonymous], ARXIV191208854
[3]   QUANTUM COMPUTATION AND THE EVALUATION OF TENSOR NETWORKS [J].
Arad, Itai ;
Landau, Zeph .
SIAM JOURNAL ON COMPUTING, 2010, 39 (07) :3089-3121
[4]  
Arfken G. B., 2013, MATH METHODS PHYS, DOI DOI 10.1016/C2009-0-30629-7
[5]   Simulating Quantum Fields with Cavity QED [J].
Barrett, Sean ;
Hammerer, Klemens ;
Harrison, Sarah ;
Northup, Tracy E. ;
Osborne, Tobias J. .
PHYSICAL REVIEW LETTERS, 2013, 110 (09)
[6]   Quantum complexity theory [J].
Bernstein, E ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1411-1473
[7]   Efficient quantum algorithms for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Ahokas, Graeme ;
Cleve, Richard ;
Sanders, Barry C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :359-371
[8]   Simulating Hamiltonian Dynamics with a Truncated Taylor Series [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Cleve, Richard ;
Kothari, Robin ;
Somma, Rolando D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[9]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[10]  
Bodlaender H. L., 1994, ACTA CYBERN, V11, P1