Zero-Temperature Equation of State of a Two-Dimensional Bosonic Quantum Fluid with Finite-Range Interaction

被引:7
作者
Tononi, Andrea [1 ,2 ]
机构
[1] Univ Padua, Dipartimento Fis & Astron Galileo Galilei, Via Marzolo 8, I-35131 Padua, Italy
[2] Univ Padua, CNISM, Via Marzolo 8, I-35131 Padua, Italy
来源
CONDENSED MATTER | 2019年 / 4卷 / 01期
关键词
Bose-Einstein condensation; ultracold atoms; finite-range; equation of state; two-dimensional; BOSE-EINSTEIN CONDENSATION; HELIUM; GAS;
D O I
10.3390/condmat4010020
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We derive the two-dimensional equation of state for a bosonic system of ultracold atoms interacting with a finite-range effective interaction. Within a functional integration approach, we employ a hydrodynamic parameterization of the bosonic field to calculate the superfluid equations of motion and the zero-temperature pressure. The ultraviolet divergences, naturally arising from the finite-range interaction, are regularized with an improved dimensional regularization technique.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 31 条
[1]  
Altland A., 2006, Condensed Matter Field Theory
[2]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[3]  
[Anonymous], 1947, J PHYS-USSR, DOI DOI 10.1016/B978-0-08-015816-7.50020-1
[4]   Equation of state of a weakly interacting two-dimensional Bose gas studied at zero temperature by means of quantum Monte Carlo methods [J].
Astrakharchik, G. E. ;
Boronat, J. ;
Casulleras, J. ;
Kurbakov, I. L. ;
Lozovik, Yu. E. .
PHYSICAL REVIEW A, 2009, 79 (05)
[5]   Effective-range corrections to the ground-state energy of the weakly-interacting Bose gas in two dimensions [J].
Beane, Silas R. .
EUROPEAN PHYSICAL JOURNAL D, 2018, 72 (03)
[6]  
Berezinskii V.L., 1971, SOV PHYS JETP, V34, P1144
[7]   Nonuniversal effects in the homogeneous Bose gas [J].
Braaten, E ;
Hammer, HW ;
Hermans, S .
PHYSICAL REVIEW A, 2001, 63 (06) :12
[8]   EVIDENCE OF BOSE-EINSTEIN CONDENSATION IN AN ATOMIC GAS WITH ATTRACTIVE INTERACTIONS [J].
BRADLEY, CC ;
SACKETT, CA ;
TOLLETT, JJ ;
HULET, RG .
PHYSICAL REVIEW LETTERS, 1995, 75 (09) :1687-1690
[9]   Finite-range corrections to the thermodynamics of the one-dimensional Bose gas [J].
Cappellaro, A. ;
Salasnich, L. .
PHYSICAL REVIEW A, 2017, 96 (06)
[10]   Thermal field theory of bosonic gases with finite-range effective interaction [J].
Cappellaro, A. ;
Salasnich, L. .
PHYSICAL REVIEW A, 2017, 95 (03)