Weighted local Hardy spaces associated with operators

被引:1
作者
Gong, Ruming [1 ]
Song, Liang [2 ]
Xie, Peizhu [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Zhongshan Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2018年 / 128卷 / 02期
关键词
Weighted local Hardy space; non-negative self-adjoint operator; semigroups; local; (1; 2; w)-atoms; weighted local BMO space; VERSION; BOUNDS;
D O I
10.1007/s12044-018-0392-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a self-adjoint positive operator on L-2(R-n). Assume that the semigroup e(-tL) generated by -L satisfies the Gaussian kernel bounds on L-2(R-n). In this article, we study weighted local Hardy space h(L,w)(1) (R-n) associated with L in terms of the area function characterization, and prove their atomic characters. Then, we introduce the weighted local BMO space bmo(L,w)(R-n) and prove that the dual of h(L,w)(1) (R-n) is bmoL, w(Rn). Finally a broad class of applications of these results is described.
引用
收藏
页数:20
相关论文
共 26 条
[1]  
[Anonymous], 2000, GRAD STUD MATH
[2]  
[Anonymous], 1998, ASTERISQUE
[3]  
[Anonymous], 2005, London Mathematical Society Monographs Series
[4]   Hardy spaces and divergence operators on strongly Lipschitz domains of Rn [J].
Auscher, P ;
Russ, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (01) :148-184
[5]   Hardy spaces of differential forms on Riemannian manifolds [J].
Auscher, Pascal ;
McIntosh, Alan ;
Russ, Emmanuel .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) :192-248
[6]   Gaussian heat kernel upper bounds via the Phragmen-Lindelof theorem [J].
Coulhon, Thierry ;
Sikora, Adam .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 96 :507-544
[7]   Duality of Hardy and BMO spaces associated with operators with heat kernel bounds [J].
Duong, XT ;
Yan, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (04) :943-973
[8]   Hardy spaces and regularity for the inhomogeneous Dirichlet and Neumann problems [J].
Duong, Xuan Thinh ;
Hofmann, Steve ;
Mitrea, Donna ;
Mitrea, Marius ;
Yan, Lixin .
REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (01) :183-236
[9]  
Dziubanski J, 1999, REV MAT IBEROAM, V15, P279
[10]  
Garcia-Cuerva J., 1985, WEIGHTED NORM INEQUA