Single NMR image super-resolution based on extreme learning machine

被引:1
|
作者
Wang, Zhiqiong [1 ]
Xin, Junchang [2 ]
Wang, Zhongyang [1 ]
Tian, Shuo [1 ]
Qiu, Xuejun [3 ]
机构
[1] Northeastern Univ, Sino Dutch Biomed & Informat Engn Sch, Shenyang Shi, Liaoning Sheng, Peoples R China
[2] Northeastern Univ, Sch Comp Sci & Engn, Shenyang Shi, Liaoning Sheng, Peoples R China
[3] Chinese Acad Sci, Beijing Daheng Med Equipment Co Ltd, Beijing 100864, Peoples R China
来源
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Super-resolution; Single image; NMR; Extreme learning machine; RECONSTRUCTION;
D O I
10.1016/j.ejmp.2016.09.001
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Introduction: The performance limitation of MRI equipment and higher resolution demand of NMR images from radiologists have formed a strong contrast. Therefore, it is important to study the super resolution algorithm suitable for NMR images, using low costs software to replace the expensive equipment-updating. Methods and materials: Firstly, a series of NMR images are obtained from original NMR images with original noise to the lowest resolution images with the highest noise. Then, based on extreme learning machine, the mapping relation model is constructed from lower resolution NMR images with higher noise to higher resolution NMR images with lower noise in each pair of adjacent images in the obtained image sequence. Finally, the optimal mapping model is established by the ensemble way to reconstruct the higher resolution NMR images with lower noise on the basis of original resolution NMR images with original noise. Experiments are carried out by 990111 NMR brain images in datasets NITRC, REMBRANDT, RIDER NEURO MRI, TCGA-GBM and TCGA-LGG. Results: The performance of proposed method is compared with three approaches through 7 indexes, and the experimental results show that our proposed method has a significant improvement. Discussion: Since our method considers the influence of the noise, it has 20% higher in Peak-Signal-to-Noise- Ratio comparison. As our method is sensitive to details, and has a better characteristic retention, it has higher image quality upgrade of 15% in the additional evaluation. Finally, since extreme learning machine has a celerity learning speed, our method is 46.1% faster. (C) 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1331 / 1338
页数:8
相关论文
共 50 条
  • [1] IMAGE SUPER-RESOLUTION BY EXTREME LEARNING MACHINE
    An, Le
    Bhanu, Bir
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 2209 - 2212
  • [2] Single Image Super-Resolution Using Multiple Extreme Learning Machine Regressors
    Cosmo, Daniel Luis
    Inaba, Fernando Kentaro
    Teatini Salles, Evandro Ottoni
    2017 30TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2017, : 397 - 404
  • [3] Single Image Super-resolution Based on Residual Learning
    Xie, Chao
    Lu, Xiaobo
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING (ICVIP 2017), 2017, : 124 - 129
  • [4] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, 16 : 413 - 426
  • [5] Single Image Super-Resolution Based on Incoherent Dictionary Learning
    Wang, Junhua
    Liao, Xiaofang
    Li, Jianjun
    Li, Junshan
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 555 - 558
  • [6] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Ren, Jin-Chang
    Xu, Xin-Ying
    Zhao, Sophia
    Xie, Gang
    Masero, Valentin
    Hussain, Amir
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2019, 16 (04) : 413 - 426
  • [7] Deep Learning Based Single Image Super-Resolution: A Survey
    Khanh Ha, Viet
    Ren, Jinchang
    Xu, Xinying
    Zhao, Sophia
    Xie, Gang
    Masero Vargas, Valentin
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 106 - 119
  • [8] Fast Learning-Based Single Image Super-Resolution
    Kumar, Neeraj
    Sethi, Amit
    IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (08) : 1504 - 1515
  • [9] Deep Learning Based Single Image Super-resolution:A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, (04) : 413 - 426
  • [10] A Review of Single Image Super-resolution Based on Deep Learning
    Zhang N.
    Wang Y.-C.
    Zhang X.
    Xu D.-D.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2479 - 2499