共 3 条
Alternating absorption features during attosecond-pulse propagation in a laser-controlled gaseous medium
被引:28
作者:
Pfeiffer, Adrian N.
[1
,3
]
Bell, M. Justine
[1
,3
]
Beck, Annelise R.
[1
,3
]
Mashiko, Hiroki
[1
,3
]
Neumark, Daniel M.
[1
,3
]
Leone, Stephen R.
[1
,2
,3
]
机构:
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA
来源:
PHYSICAL REVIEW A
|
2013年
/
88卷
/
05期
关键词:
INDUCED TRANSPARENCY;
STATES;
HELIUM;
LIGHT;
D O I:
10.1103/PhysRevA.88.051402
中图分类号:
O43 [光学];
学科分类号:
070207 ;
0803 ;
摘要:
Recording the transmitted spectrum of a weak attosecond pulse through a medium, while a strong femtosecond pulse copropagates at variable delay, probes the strong-field dynamics of atoms, molecules, and solids. Usually, the interpretation of these measurements is based on the assumption of a thin medium. Here, the propagation through a macroscopic medium of helium atoms in the region of fully allowed resonances is investigated both theoretically and experimentally. The propagation has dramatic effects on the transient spectrum even at relatively low pressures (50 mbar) and short propagation lengths (1 mm). The absorption does not evolve monotonically with the product of propagation distance and pressure, but regions with characteristics of Lorentz line shapes and characteristics of Fano line shapes alternate. Criteria are deduced to estimate whether macroscopic effects can be neglected or not in a transient absorption experiment. Furthermore, the theory in the limit of single-atom response yields a general equation for Lorentz- and Fano-type line shapes at variable pulse delay.
引用
收藏
页数:5
相关论文