BV solutions for a hydrodynamic model of flocking-type with all-to-all interaction kernel

被引:9
作者
Amadori, Debora [1 ]
Christoforou, Cleopatra [2 ]
机构
[1] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, I-67100 Laquila, Italy
[2] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
BV weak solutions; global existence; vacuum; time-asymptotic; front tracking; self-organized dynamics; flocking; COMPRESSIBLE EULER EQUATIONS; GLOBAL WEAK SOLUTIONS; HYPERBOLIC SYSTEMS; BALANCE LAWS; DYNAMICS; LIMIT; BEHAVIOR; PARTICLE;
D O I
10.1142/S0218202522500543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a hydrodynamic model of flocking-type with all-to-all interaction kernel in one-space dimension and establish global existence of entropy weak solutions with concentration to the Cauchy problem for any BV initial data that has finite total mass confined in a bounded interval and initial density uniformly positive therein. In addition, under a suitable condition on the initial data, we show that entropy weak solutions with concentration admit time-asymptotic flocking.
引用
收藏
页码:2295 / 2357
页数:63
相关论文
共 39 条
[1]   Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives [J].
Albi, G. ;
Bellomo, N. ;
Fermo, L. ;
Ha, S. -Y. ;
Kim, J. ;
Pareschi, L. ;
Poyato, D. ;
Soler, J. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (10) :1901-2005
[2]   Global weak solutions for systems of balance laws [J].
Amadori, D ;
Guerra, G .
APPLIED MATHEMATICS LETTERS, 1999, 12 (06) :123-127
[3]   Global BV solutions and relaxation limit for a system of conservation laws [J].
Amadori, D ;
Guerra, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :1-26
[4]   On a model of multiphase flow [J].
Amadori, Debora ;
Corli, Andrea .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (01) :134-166
[5]   Global weak solutions for a model of two-phase flow with a single interface [J].
Amadori, Debora ;
Baiti, Paolo ;
Corli, Andrea ;
Dal Santo, Edda .
JOURNAL OF EVOLUTION EQUATIONS, 2015, 15 (03) :699-726
[6]   STOCHASTIC MEAN-FIELD LIMIT: NON-LIPSCHITZ FORCES AND SWARMING [J].
Bolley, Francois ;
Canizo, Jose A. ;
Carrillo, Jose A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (11) :2179-2210
[7]  
Bressan A., 2000, Hyperbolic Systems of Conservation Laws
[8]   Critical thresholds in 1D Euler equations with non-local forces [J].
Carrillo, Jose A. ;
Choi, Young-Pil ;
Tadmor, Eitan ;
Tan, Changhui .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (01) :185-206
[9]  
Carrillo JA, 2010, MODEL SIMUL SCI ENG, P297, DOI 10.1007/978-0-8176-4946-3_12
[10]   The global Cauchy problem for compressible Euler equations with a nonlocal dissipation [J].
Choi, Young-Pil .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (01) :185-207