Degree sum and nowhere-zero 3-flows

被引:26
作者
Fan, Genghua [1 ]
Zhou, Chuixiang [1 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Peoples R China
关键词
Degree sum; Nowhere-zero; 3-flow; 3-flow contractible;
D O I
10.1016/j.disc.2007.11.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph on n vertices. In this paper, we prove that if G satisfies the condition that d(x) + d(y) >= n for each xy is an element of E(G), then G has no nowhere-zehro 3-flow if and only if G is either one of the five graphs on at most 6 vertices or one of a very special class of graphs on at least 6 vertices. (c) 2007 Elseiver B.V. All rights reserved.
引用
收藏
页码:6233 / 6240
页数:8
相关论文
共 10 条
[1]  
Bondy J.A., 2008, GRAD TEXTS MATH
[2]   Nowhere-zero Z3-flows through Z3-connectivity [J].
DeVos, M ;
Xu, R ;
Yu, GX .
DISCRETE MATHEMATICS, 2006, 306 (01) :26-30
[3]  
FAN G, NOWHERE ZERO 3 UNPUB
[4]   GROUP CONNECTIVITY OF GRAPHS - A NONHOMOGENEOUS ANALOG OF NOWHERE-ZERO FLOW PROPERTIES [J].
JAEGER, F ;
LINIAL, N ;
PAYAN, C ;
TARSI, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1992, 56 (02) :165-182
[5]   Group connectivity of graphs with diameter at most 2 [J].
Lai, HJ ;
Yao, XJ .
EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (03) :436-443
[6]   Nowhere-zero 3-flows in locally connected graphs [J].
Lai, HJ .
JOURNAL OF GRAPH THEORY, 2003, 42 (03) :211-219
[7]  
Lai HJ, 2000, GRAPH COMBINATOR, V16, P165, DOI 10.1007/s003730050014
[8]   NOWHERE-ZERO 6-FLOWS [J].
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1981, 30 (02) :130-135
[9]   A CONTRIBUTION TO THE THEORY OF CHROMATIC POLYNOMIALS [J].
TUTTE, WT .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (01) :80-91
[10]   Nowhere-zero flows in tensor product of graphs [J].
Zhang, Zhao ;
Zheng, Yirong ;
Mamut, Aygul .
JOURNAL OF GRAPH THEORY, 2007, 54 (04) :284-292