Improved Accuracy of Linear Multistep Methods

被引:0
作者
Karaa, Samir [1 ]
机构
[1] Sultan Qaboos Univ, Dept Math & Stat, Muscat, Oman
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2013年 / 7卷 / 02期
关键词
Linear multistep methods; theta-method; optimal method; absolute stability;
D O I
10.12785/amis/070209
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a technique for improving the accuracy of a given multistep method. We first propose a new formulation of the theta-method providing a general framework for studying stability and allowing to select the appropriate values of the parameter theta that increase the order of accuracy. The idea is followed through to generate optimal linear multistep methods.
引用
收藏
页码:491 / 496
页数:6
相关论文
共 10 条
[1]  
Ascher U.M., 1998, Computer methods for ordinary differential equations and differential-algebraic equations, V61, DOI DOI 10.1137/1.9781611971392
[2]   ALTERNATING DIRECTION IMPLICIT METHODS FOR PARABOLIC EQUATIONS WITH A MIXED DERIVATIVE [J].
BEAM, RM ;
WARMING, RF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1980, 1 (01) :131-159
[3]  
Cryer C. W., 1973, BIT (Nordisk Tidskrift for Informationsbehandling), V13, P153, DOI 10.1007/BF01933487
[4]  
Dahlquist G., 1963, NORD TIDSKR INFORM, V3, P27
[5]  
Gustafsson B., 2008, High Order Difference Methods for Time Dependent PDE
[6]  
Iserles A., 1996, Numerical Analysis of Differential Equations, V1st
[7]   Improved accuracy for the approximate factorization of parabolic equations [J].
Karaa, S. .
COMPUTING, 2009, 86 (01) :23-36
[8]   High-order schemes for acoustic waveform simulation [J].
Kim, Seongjai ;
Lim, Hyeona .
APPLIED NUMERICAL MATHEMATICS, 2007, 57 (04) :402-414
[9]  
Lambert J. D., 1991, NUMERICAL METHODS OR
[10]  
Newmark NM, 1959, J ENG MECH DIV, V85, P67, DOI [10.1061/JMCEA3.0000098, DOI 10.1061/JMCEA3.0000098]