Geochemical characteristics of lake clay drilled in well QZ-4: its implication for geochemical response to climate change in the central Tibetan Plateau in the Middle-Late Pleistocene

被引:2
作者
He, Jianglin [1 ,2 ]
Wang, Jian [1 ,2 ]
Zheng, Chenggang [3 ]
Li, Weipeng [4 ,5 ]
Sun, Wei [1 ,2 ]
Guo, Tianxu [6 ]
Zeng, Shengqiang [1 ,2 ]
机构
[1] Minist Land & Resources, Chengdu Inst Geol & Mineral Resources, Chengdu 610082, Peoples R China
[2] Minist Land Resources, Key Lab Sedimentary Basin & Oil & Gas Resources, Chengdu 610081, Peoples R China
[3] SINOPEC, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
[4] China West Normal Univ, Land & Resources Coll, Nanchong 637002, Peoples R China
[5] Chinese Acad Sci, Inst Mt Hazards & Environm, Key Lab Mt Environm Evolut & Regulat, Chengdu 610041, Peoples R China
[6] China Geol Survey, Oil & Gas Survey, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Tibet Plateau; Mid-Pleistocene; Paleo-climate; Geochemistry; REEs; RARE-EARTH-ELEMENTS; QINGHAI-TIBETAN; ICE CORE; CHINA; SEDIMENT; RIVER; NORTHERN; RECORDS; HISTORY; UPLIFT;
D O I
10.1007/s12665-016-6119-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A colour sequence, which is composed of a yellow subsequence in the lower unit and a grey subsequence in the upper unit, is an important climate archive for the central Tibetan Plateau in the Middle-Late Pleistocene. However, little study has been done on it. In well QZ-4, this colour sequence is thicker than 116 m, which is an important climate archive for the central Tibetan Plateau in the Middle-Late Pleistocene. In this work, the ESR dating and geochemistry analysis have been carried out to provide a preliminary insight into the paleo-climate change in the central Tibetan Plateau. It can be concluded that the 23.56 ka (125.96-149.52 ka BP) time interval, which is marked by the angular unconformity surface at 272.48 m in depth, proves that the deposition of this colour sequence is dominated by Gonghe Movement. After this movement, chemical weathering is reduced; however, the sedimentation rate is increased from 0.18 to 3.5 m/ka. In the central Tibetan Plateau, the climate became colder and drier in the Middle-Late Pleistocene, which is roughly consistent with global paleo-climate change at that time. All these changes are correlated with the change of elevation and atmospheric circulation in the Tibetan Plateau and its surrounding area, which are driven by the tectonic uplift of Gonghe Movement. The Gonghe Movement is likely a driving force for the short-lived spike at about 120 ka.
引用
收藏
页数:14
相关论文
共 54 条
[1]   The history and variability of the East Asian paleomonsoon climate [J].
An, ZS .
QUATERNARY SCIENCE REVIEWS, 2000, 19 (1-5) :171-187
[2]   Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history [J].
Chen, Fahu ;
Yu, Zicheng ;
Yang, Meilin ;
Ito, Emi ;
Wang, Sumin ;
Madsen, David B. ;
Huang, Xiaozhong ;
Zhao, Yan ;
Sato, Tomonori ;
Birks, H. John B. ;
Boomer, Ian ;
Chen, Jianhui ;
An, Chengbang ;
Wuennemann, Bernd .
QUATERNARY SCIENCE REVIEWS, 2008, 27 (3-4) :351-364
[3]   Rare earth elements of a 1000-year paddy soil chronosequence: Implications for sediment provenances, parent material uniformity and pedological changes [J].
Chen, Liu-Mei ;
Zhang, Gan-Lin ;
Jin, Zhang-Dong .
GEODERMA, 2014, 230 :274-279
[4]   THE CHEMICAL SIGNATURE OF SOURCE ROCKS IN SIZE FRACTIONS OF HOLOCENE STREAM SEDIMENT DERIVED FROM METAMORPHIC ROCKS IN THE WET MOUNTAINS REGION, COLORADO, USA [J].
CULLERS, RL .
CHEMICAL GEOLOGY, 1994, 113 (3-4) :327-343
[5]   Eemian interglacial reconstructed from a Greenland folded ice core [J].
Dahl-Jensen, D. ;
Albert, M. R. ;
Aldahan, A. ;
Azuma, N. ;
Balslev-Clausen, D. ;
Baumgartner, M. ;
Berggren, A. -M. ;
Bigler, M. ;
Binder, T. ;
Blunier, T. ;
Bourgeois, J. C. ;
Brook, E. J. ;
Buchardt, S. L. ;
Buizert, C. ;
Capron, E. ;
Chappellaz, J. ;
Chung, J. ;
Clausen, H. B. ;
Cvijanovic, I. ;
Davies, S. M. ;
Ditlevsen, P. ;
Eicher, O. ;
Fischer, H. ;
Fisher, D. A. ;
Fleet, L. G. ;
Gfeller, G. ;
Gkinis, V. ;
Gogineni, S. ;
Goto-Azuma, K. ;
Grinsted, A. ;
Gudlaugsdottir, H. ;
Guillevic, M. ;
Hansen, S. B. ;
Hansson, M. ;
Hirabayashi, M. ;
Hong, S. ;
Hur, S. D. ;
Huybrechts, P. ;
Hvidberg, C. S. ;
Iizuka, Y. ;
Jenk, T. ;
Johnsen, S. J. ;
Jones, T. R. ;
Jouzel, J. ;
Karlsson, N. B. ;
Kawamura, K. ;
Keegan, K. ;
Kettner, E. ;
Kipfstuhl, S. ;
Kjaer, H. A. .
NATURE, 2013, 493 (7433) :489-494
[6]   QUATERNARY GLACIATION OF TIBET - THE GEOLOGICAL EVIDENCE [J].
DERBYSHIRE, E ;
SHI, YF ;
LI, JJ ;
ZHENG, BX ;
LI, SJ ;
WANG, JT .
QUATERNARY SCIENCE REVIEWS, 1991, 10 (06) :485-510
[7]  
Fagel N, 2013, QUATERNARY SCI REV, V92, P140
[8]   Geochemistry and origin of rare earth elements (REEs) in the Shengli River oil shale, northern Tibet, China [J].
Fu, Xiugen ;
Wang, Jian ;
Zeng, Yuhong ;
Tan, Fuwen ;
He, Jianglin .
CHEMIE DER ERDE-GEOCHEMISTRY, 2011, 71 (01) :21-30
[9]   Deglaciated areas of Kilimanjaro as a source of volcanic trace elements deposited on the ice cap during the late Holocene [J].
Gabrielli, P. ;
Hardy, D. R. ;
Kehrwald, N. ;
Davis, M. ;
Cozzi, G. ;
Turetta, C. ;
Barbante, C. ;
Thompson, L. G. .
QUATERNARY SCIENCE REVIEWS, 2014, 93 :1-10
[10]  
Guo S, 1994, GEOCHEMISTRY RES POL