Convergence of Newton, Halley and Chebyshev iterative methods as methods for simultaneous determination of multiple polynomial zeros

被引:25
作者
Kyncheva, Veselina K. [1 ]
Yotov, Viktor V. [1 ]
Ivanov, Stoil I. [1 ]
机构
[1] Paisij Hilendarski Univ Plovdiv, Fac Phys, Plovdiv 4000, Bulgaria
关键词
Newton's method; Halley's method; Chebyshev's method; Polynomial zeros; Multiple zeros; Local convergence; ROOT-FINDING METHODS; SIMULTANEOUS APPROXIMATION; ORDER;
D O I
10.1016/j.apnum.2016.10.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we provide a local convergence analysis of Newton, Halley and Chebyshev iterative methods considered as methods for simultaneous determination of all multiple zeros of a polynomial f over an arbitrary normed field 1K. Convergence theorems with a priori and a posteriori error estimates for each of the proposed methods are established. The obtained results for Newton and Chebyshev methods are new even in the case of simple zeros. Three numerical examples are given to compare the convergence properties of the considered methods and to confirm the theoretical results. (C) 2016 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:146 / 154
页数:9
相关论文
共 35 条
[1]  
Batra P, 2002, BIT, V42, P467
[2]  
Chebyshev P., 1973, COMPLETE WORKS PL CH
[3]  
Ezquerro J., 2001, MARGARITA MATH, P205
[4]   ALGORITHM FOR TOTAL, OR PARTIAL, FACTORIZATION OF A POLYNOMIAL [J].
FARMER, MR ;
LOIZOU, G .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1977, 82 (NOV) :427-437
[5]   PARALLEL SQUARE-ROOT ITERATIONS FOR MULTIPLE ROOTS [J].
GARGANTINI, I .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1980, 6 (03) :279-288
[6]  
Halley Edm., 1694, PHILOS T 1683 1775, V18, P136, DOI DOI 10.1098/RSTL.1694.0029
[7]  
Iliev A., 2001, Compt. rend. Acad. bulg. Sci, V54, P31
[8]   On the Convergence of Chebyshev's Method for Multiple Polynomial Zeros [J].
Ivanov, Stoil .
RESULTS IN MATHEMATICS, 2016, 69 (1-2) :93-103
[9]  
KJURKCHIEV N, 1990, DOKL BOLG AKAD NAUK, V43, P29
[10]  
Kyurkchiev N.V., 1998, Mathematical Research, V104