Uniqueness of Solutions on the Whole Time Axis to the Navier-Stokes Equations in Unbounded Domains

被引:7
作者
Farwig, Reinhard [1 ,2 ]
Nakatsuka, Tomoyuki [3 ]
Taniuchi, Yasushi [4 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Darmstadt, Germany
[2] Tech Univ Darmstadt, Int Res Training Grp Darmstadt Tokyo IRTG 1529, Darmstadt, Germany
[3] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648601, Japan
[4] Shinshu Univ, Dept Math Sci, Matsumoto, Nagano 3908621, Japan
基金
日本学术振兴会;
关键词
Almost periodic solutions; Mild solutions; Navier-Stokes equations; Precompact range condition; Unbounded domains; Uniqueness; 35Q30; 35A02; 76D05; PERIODIC-SOLUTIONS; MILD SOLUTIONS; NONSTATIONARY STOKES; L2; DECAY; FLOWS; EXISTENCE; SYSTEM; SEMIGROUP; STABILITY; BOUNDARY;
D O I
10.1080/03605302.2015.1054938
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the uniqueness of bounded continuous L-3,L- -solutions on the whole time axis to the Navier-Stokes equations in 3-dimensional unbounded domains. Here, L-p,L- q denotes the scale of Lorentz spaces. Thus far, uniqueness of such solutions to the Navier-Stokes equations in unbounded domain, roughly speaking, is known only for a small solution in BC(; L-3,L- ) within the class of solutions which have sufficiently small L(L-3,L- )-norm. In this paper, we discuss another type of uniqueness theorem for solutions in BC(; L-3,L- ) using a smallness condition for one solution and a precompact range condition for the other one. The proof is based on the method of dual equations.
引用
收藏
页码:1884 / 1904
页数:21
相关论文
共 47 条
[1]  
[Anonymous], 1976, INTERPOLATION SPACES
[2]   ALGEBRAIC L2 DECAY FOR NAVIER-STOKES FLOWS IN EXTERIOR DOMAINS [J].
BORCHERS, W ;
MIYAKAWA, T .
ACTA MATHEMATICA, 1990, 165 (3-4) :189-227
[3]   ON THE SEMIGROUP OF THE STOKES OPERATOR FOR EXTERIOR DOMAINS IN LQ-SPACES [J].
BORCHERS, W ;
SOHR, H .
MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (03) :415-425
[4]   L2 DECAY FOR THE NAVIER-STOKES FLOW IN HALFSPACES [J].
BORCHERS, W ;
MIYAKAWA, T .
MATHEMATISCHE ANNALEN, 1988, 282 (01) :139-155
[5]  
Cannone M, 2000, REV MAT IBEROAM, V16, P1
[6]  
Corduneanu C., 1968, INTERSCIENCE TRACTS, V22
[7]   Navier-Stokes equations in aperture domains: Global existence with bounded flux and time-periodic solutions [J].
Crispo, Francesca ;
Maremonti, Paolo .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (03) :249-277
[8]  
FARWIG R, 1994, MATH NACHR, V170, P53
[9]   GENERALIZED RESOLVENT ESTIMATES FOR THE STOKES SYSTEM IN BOUNDED AND UNBOUNDED-DOMAINS [J].
FARWIG, R ;
SOHR, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1994, 46 (04) :607-643
[10]  
Farwig R., 1996, ANALYSIS, V16, P1, DOI DOI 10.1524/ANLY.1996.16.1.1