AN ADAPTIVE EDGE FINITE ELEMENT METHOD FOR THE MAXWELL'S EQUATIONS IN METAMATERIALS

被引:6
作者
Wang, Hao [1 ]
Yang, Wei [1 ]
Huang, Yunqing [2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan 411105, Hunan, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2020年 / 28卷 / 02期
关键词
Maxwell's equations; wave source terms; a-posteriori error estimator; adaptive edge finite element method; metamaterial media; QUASI-STATIC APPROXIMATION; ERROR ESTIMATORS; WAVE-PROPAGATION; RECOVERY; CLOAKING; SCATTERING; RESONANCE; FULL;
D O I
10.3934/era.2020051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study an adaptive edge finite element method for time-harmonic Maxwell's equations in metamaterials. A-posteriori error estimators based on the recovery type and residual type are proposed, respectively. Based on our a-posteriori error estimators, the adaptive edge finite element method is designed and applied to simulate the backward wave propagation, electromagnetic splitter, rotator, concentrator and cloak devices. Numerical examples are presented to illustrate the reliability and efficiency of the proposed a-posteriori error estimations for the adaptive method.
引用
收藏
页码:961 / 976
页数:16
相关论文
共 50 条
[31]   A stabilized finite element method on nonaffine grids for time-harmonic Maxwell's equations [J].
Du, Zhijie ;
Duan, Huoyuan .
BIT NUMERICAL MATHEMATICS, 2023, 63 (04)
[32]   Parallel and Explicit Finite-Element Time-Domain Method for Maxwell's Equations [J].
Kim, Joonshik ;
Teixeira, Fernando L. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (06) :2350-2356
[33]   A stabilized finite element method on nonaffine grids for time-harmonic Maxwell’s equations [J].
Zhijie Du ;
Huoyuan Duan .
BIT Numerical Mathematics, 2023, 63
[34]   Fully Discrete A-φ Finite Element Method for Maxwell's Equations with a Nonlinear Boundary Condition [J].
Kang, Tong ;
Wang, Ran ;
Chen, Tao ;
Zhang, Huai .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2015, 8 (04) :605-633
[35]   A SECOND-ORDER FINITE ELEMENT METHOD WITH MASS LUMPING FOR MAXWELL'S EQUATIONS ON TETRAHEDRA [J].
Egger, Herbert ;
Radu, Bogdan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (02) :864-885
[36]   A mortar edge element method with nearly optimal convergence for three-dimensional Maxwell's equations [J].
Hu, Qiya ;
Shu, Shi ;
Zou, Jun .
MATHEMATICS OF COMPUTATION, 2008, 77 (263) :1333-1353
[37]   A hybrid finite-element/finite-difference method with an implicit-explicit time-stepping scheme for Maxwell's equations [J].
Zhu, B. ;
Chen, J. ;
Zhong, W. ;
Liu, Q. H. .
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2012, 25 (5-6) :607-620
[38]   An adaptive edge finite element method for electromagnetic cloaking simulation [J].
Li, Jichun ;
Huang, Yunqing ;
Yang, Wei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 249 :216-232
[39]   EDGE ELEMENT METHODS FOR MAXWELL'S EQUATIONS WITH STRONG CONVERGENCE FOR GAUSS' LAWS [J].
Ciarlet, Patrick, Jr. ;
Wu, Haijun ;
Zou, Jun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) :779-807
[40]   A coupled micromagnetic-Maxwell equations solver based on the finite element method [J].
Couture, S. ;
Wang, X. ;
Goncharov, A. ;
Lomakin, V. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 493